
Second test Calculus 2, 19 December 2017, Solutions

1. a) Use the chain rule to find

fx(x, y) =
e−(x

2/4y) ·
(
−2x
4y

)
√
y

=
−xe−(x2/4y)

2y
√
y

and therefore (product and chain rule)

fxx(x, y) =
−e−(x2/4y) − xe−(x2/4y) ·

(
−2x
4y

)
2y
√
y

= e−(x
2/4y)

(
x2 − 2y

4y2
√
y

)
.

Next use quotient and chain rule to find

fy(x, y) =
e−(x

2/4y) ·
(
x2

4y2

)√
y − 1

2
√
ye
−(x2/4y)

y
= e−(x

2/4y)

(
x2 − 2y

4y2
√
y

)
.

So we can conclude that
∂f

∂y
=
∂2f

∂x2
.

b) The gradient vector at (2, 1) is

∇f(2, 1) = fx(2, 1) i + fy(2, 1) j = −e−1 i +
1

2
e−1 j =

(
−e−1
1
2e
−1

)
.

The unit vector v in the same direction as u is given by

v =
u

‖u‖
=

(
1/
√

2

1/
√

2

)
=

1√
2
i +

1√
2
j.

So, since f is clearly differentiable at (2, 1), we find that the rate of change of
f at (2, 1) in the direction of u is:

Dv(2, 1) = v • ∇f(2, 1) = −e
−1
√

2
+
e−1

2
√

2
= − e

−1

2
√

2
= −
√

2

4e
.

2. a) Calculate both first partial derivatives and set them equal to 0:

fx(x, y) = 0 =⇒ 2x− 2y3 = 0 =⇒ x = y3.

fy(x, y) = 0 =⇒ −6xy2 + 6y = 0 =⇒ y = 0 or y =
1

x
.

Substitution of y = 0 in the first equation gives x = 0. So we find the critical
point S1 = (0, 0). Substitution of y = 1

x in the first equation gives x = 1
x3

with
solution x = 1 or x = −1. So we also find the critical points S2 = (1, 1) and
S3 = (−1,−1).
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b) For general (x, y) we find

fxx(x, y) = 2, fyy(x, y) = 6− 12xy and fxy(x, y) = −6y2 = fyx(x, y).

So the determinant of the Hesse matrix is

fxx(x, y)fyy(x, y)− fxy(x, y)fyx(x, y) = 12− 24xy − 36y4.

This implies that S2 and S3 are saddle points (fxxfyy − fxyfyx = −48 < 0)
and that f has a local minimum value in S1 (fxxfyy − fxyfyx = 12 > 0 and
fxx = 2 > 0).

3. Let (x, y, z) be an arbitrary point on the given surface. The distance from this point
to the origin is equal to

√
x2 + y2 + z2. We want to minimize this distance subject

to the constraint xy+z2 = 2. However, since it will lead to less difficult calculations,
we choose to minimize the square of the distance. Therefore introduce the Lagrange
function L(x, y, λ) = x2 + y2 + z2 + λ(xy + z2 − 4) and find its critical points:

0 = ∂L
∂x = 2x+ λy (A)

0 = ∂L
∂y = 2y + λx (B)

0 = ∂L
∂z = 2z + 2λz (C)

0 = ∂L
∂λ = xy + z2 − 4 (D)

Equation (C) yields to λ = −1 (I) or z = 0 (II). Consider both cases separately,
starting with case (I). Substitution of λ = −1 in equations (A) and (B) yields 2x = y
and 2y = x, so x = y = 0, and therefore (use equation (D)) z = 2 or z = −2. For
these points ((0, 0,−2) and (0, 0, 2)) the square of the distance to the origin is 4.
Now consider case (II). Substitution of z = 0 in equation (D) yields xy = 4. Next
multiply equation (A) by x and equation (B) by y and subtract the resulting equa-
tions to get 2x2 − 2y2 = 0, so x = y or x = −y. In combination with xy = 4 only
x = y is possible and yields x = y = 2 or x = y = −2. So we also find the critical
points (2, 2, 0) and (−2,−2, 0). The square of the distance to the origin for these
points is 8.
So in case (I) we found the points that are closest to the origin: (0, 0, 2) and (0, 0,−2).

4. Since we cannot find an antiderivative of
√
x

1+x2
easily we will reverse the order of

integration. Make a sketch of the domain and find:∫ 2

0

∫ 4

y2

√
x

1 + x2
dx dy =

∫ 4

0

∫ √x
0

√
x

1 + x2
dy dx =

∫ 4

0

√
x

1 + x2

[
y
]y=√x
y=0

dx

=

∫ 4

0

x

1 + x2
dx =

[1

2
ln (1 + x2)

]x=4

x=0
=

1

2
ln (17).

5. We will use the transformation u = y
x2

and v = xy. Then the region in the (u, v)-
plane is given by 1 ≤ u ≤ 3 and 1 ≤ v ≤ 3. Furthermore:

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∂u∂x ∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ =

∣∣∣∣− 2y
x3

1
x2

y x

∣∣∣∣ = −3y

x2
= −3u,
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which implies that ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =
1∣∣∣∂(u,v)∂(x,y)

∣∣∣ =

∣∣∣∣− 1

3u

∣∣∣∣ =
1

3u
.

So the integral becomes∫∫
D
dA =

∫ 3

1

∫ 3

1

1

3u
du dv =

∫ 3

1

[1

3
ln (u)

]3
1
dv =

∫ 3

1

1

3
ln 3 dv =

1

3
ln 3
[
v
]3
1

=
2

3
ln 3.

6. Rewrite the equation to z(z3 + i) = 0, which already gives the solution z1 = 0. For
the other (three) solutions we have to solve the equation z3 = −i, which is equivalent
to solving separately

|z3| = | − i| = 1 and arg (z3) = arg (−i) + 2kπ = −π
2

+ 2kπ.

Since |z3| = |z|3, the first equation yields |z| = 1. And since arg (z3) = 3 arg (z) the
second equation gives arg (z) = −π

6 + 2
3kπ. So the other three solutions are (choose

k = 0, 1, 2):

z2 = 1 ·
(

cos

(
−1

6
π

)
+ i sin

(
−1

6
π

))
=

1

2

√
3− 1

2
i,

z3 = 1 ·
(

cos

(
1

2
π

)
+ i sin

(
1

2
π

))
= i,

z4 = 1 ·
(

cos

(
7

6
π

)
+ i sin

(
7

6
π

))
= −1

2

√
3− 1

2
i.

7. Rewrite the equation as r(1 + sin θ) = 2, which leads to r = 2 − r sin θ. The
transformation from polar to rectangular coordinates gives

√
x2 + y2 = 2− y. Now

square both sides to obtain

x2 + y2 = (2− y)2 =⇒ x2 = 4− 4y =⇒ y = 1− 1

4
x2.

So the resulting curve is a parabola with top (0, 1).

8. This is a first order differential equation that is separable. Furthermore it is clear
from the initial value that y(x) = 0 is not a solution. So separate the variables to
find: ∫

1

y2
dy =

∫
x2 dx =⇒ −1

y
=

1

3
x3 + C,

so the general solution is y(x) =
−1

C + 1
3x

3
. Substitute the initial value to obtain

1 = −1
C , so C = −1. So the final solution is y(x) =

−1

−1 + 1
3x

3
=

3

3− x3
.
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9. Substitute y(x) = erx. Then the auxiliary equation becomes

4r2 + 4r + 1 = (2r + 1)2 = 0,

with only one solutions r = −1
2 . So the general real solution is:

y(x) = c1e
x/2 + c2xe

x/2, c1, c2 ∈ R.
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