First test Calculus 2, 20 November 2017, Solutions

1. Define the function f :[2,00) = R by f(x) = 22 — 22", Since

flx) =2ze™ —2%e " =2(2—2)e® <0 for all z > 2,

. . . . 21° . .
f is decreasing on its domain. Therefore the sequence {Z—n} is also decreasing.
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Furthermore, since lim % = 0 (“e” wins from n
n—o0

rule twice), the sequence is convergent. As a consequence the sequence is also boun-
ded (above by its maximum 4e~2 and below by 0).

,or use f(x) and apply I'Hospitals
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D = a3 Now look at the partial sums:
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2. First notice that
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3. a) Leta,= M and choose b,, = —. Then use the limit comparison test:

2n2 —n+3 n

1
1 2 1+ —+=
lim 00— gy PV L AV T
n—oo by, n—oo 2n2 —n + 3 n n—oo 2n2 —n + 3 n~>002—5+% 2

o0 oo
Since ngl by, is divergent (p-series with p = 1), nzzjl m

b) Use the ratio test and the fact that (n 4+ 1)! = (n + 1)n! to find that

is also divergent.
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since “2" wins from n” (or use I’'Hospitals rule). So the series is divergent.

4. We use the ratio test:
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So the series converges absolutely for |2(4 — z)| < 1, that is for % <z < %, and

diverges for [2(4 — x)| > 1, which is for z < I or for z > 3.



6.

Now determine separately the behavior in the endpoints: First substitute x = % to
find 07, ﬁ which is a divergent series (p-series with p = %) Then substitute

T = % to get > (?/1%". With the alternating series test (the series is clearly

alternating and the sequence {ﬁ} is decreasing with limit 0) we can conclude that

this series converges (conditionally). So the interval of convergence is (%, %]

a) We start with the (well-known) Maclaurin series
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which converges for all ¢ € R to cost, and use the substitution ¢t = 2x to get
( 4)nx2n+3
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23 cos (2z) = o

exactly as required (we used 22" = 4").
b) Take derivatives on both sides of the identity
0 2n+3
3 _ (—4)"z
x” cos (2z) = Z BT
n=0
to find (use term-by-term differentiation in the series)
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322 cos (2x) — 23 sin (2) Z n—l— )x2”+2.
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Now divide by 22 on both sides to get:
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3cos (2z) — 2z sin (2z) = 7;) ()Q(n)n!—i_)x%
and finally substitute z = 3:
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x+1
c)ue|y—3]=0,500-(z+1)+3-(y—3)—1-(2—1)=0,0r 3y —z=38.
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d) The distance is given by
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a) For ¢ = 0 the level “curve” is the point (0,0). For ¢ = 1 we find the lines y =1
and y = —1. For ¢ = 2 we find the hyperbola 3% — 22 = 2.
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2a(1 — y° 2
b) The partial derivatives are gi = M an g‘; = i T

¢) The tangent plane passes through P = (1,0, ). Furthermore: %(1, 0) = 1 and

%(1, 0) = 0. So an equation of the tangent plane is
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Z:§+f(x—1)+0(y—0):§x, or x — 2z =0.
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