Vrije Universiteit Amsterdam	Calculus 2, Resit
Faculty of Sciences	16-02-2017
Department of Mathematics	18.30 - 21.15 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Determine if the following series are convergent or divergent.

a)
$$\sum_{n=1}^{\infty} \frac{e^{n^2}}{n!},$$

b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n)}{n}$$
.

2. Consider the power series

$$\sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n \, 4^n}.$$

- a) Determine its interval of convergence.
- b) Suppose that this power series converges to the sum f(x) on an open interval containing 0, that is

$$f(x) = \sum_{n=1}^{\infty} \frac{(x-1)^{2n}}{n \, 4^n}.$$

Calculate f'(0).

3. Calculate the Maclaurin-series (Taylor-series around 0) of the function

$$f(x) = \frac{x^2}{2 - x}.$$

Also determine the interval of convergence of this series.

4. The vectors \mathbf{u} and \mathbf{v} are given by

$$\mathbf{u} = \begin{pmatrix} -1\\1\\0 \end{pmatrix} = -\mathbf{i} + \mathbf{j}$$
 and $\mathbf{v} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} = 2\mathbf{i} + 3\mathbf{k}$.

- a) Calculate the dot-product $\mathbf{u} \bullet \mathbf{v}$ and the cross-product $\mathbf{u} \times \mathbf{v}.$
- b) Find all unit vectors perpendicular to both \mathbf{u} and \mathbf{v} .
- 5. Find

$$\frac{\partial}{\partial y} f(x^2 y, xy^2)$$

in terms of the partial derivatives of the function f, assuming that f has continuous partial derivatives of all orders.

(Please turn over)

6. The function $f: \mathbb{R}^2 \to \mathbb{R}$ and the vector **u** are given by

$$f(x,y) = x^3 - 6xy + y^3$$
 and $\mathbf{u} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \mathbf{i} + 3\mathbf{j}$.

- a) Determine all critical points of f.
- b) Indicate for each of the critical points found in part a) if f has a local minimum value or a local maximum value, or that it is a saddle point.
- c) Find the directional derivative of f in (1,1) in the direction of the vector \mathbf{u} .

7. a) Calculate the iterated integral

$$\int_0^2 \int_y^2 \frac{x^2}{1+x^4} \, dx \, dy.$$

b) The domain $S \subset \mathbb{R}^2$ is given by

$$S = \left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, 4 \leq x^2 + y^2 \leq 9 \text{ and } x \leq 0 \text{ and } y \geq 0 \right\}.$$

Calculate, by using polar coordinates

$$\int \int_{S} \cos\left(\pi\sqrt{x^2 + y^2}\right) dA.$$

8. For the real numbers a and b we have:

$$\frac{(1 - i\sqrt{3})^9}{(\sqrt{3} + i)^6} = a + bi.$$

Calculate a and b.

9. Solve the initial value problem

$$\begin{cases} x\frac{dy}{dx} - y(x) = x^2 e^{2x}, \\ y(2) = 3e^4. \end{cases}$$

Scoring:

$$1:a)\ 2$$
 $2:a)\ 3$ $3:3$ $4:a)\ 2$ $5:2$ $6:a)\ 2.5$ $7:a)\ 3$ $8:2$ $9:3$

Final grade =
$$\frac{\text{\# points}}{4} + 1$$