Second test Calculus 2, 22 December 2016, Solutions

1. a) Since $f_x(x,y) = y^3 \cos(xy)$ and $f_y(x,y) = 2y \sin(xy) + xy^2 \cos(xy)$ the gradient at $(\pi, 1)$ is

$$\nabla f(\pi, 1) = f_x(\pi, 1)\mathbf{i} + f_y(\pi, 1)\mathbf{j} = -\mathbf{i} - \pi\mathbf{j} = \begin{pmatrix} -1 \\ -\pi \end{pmatrix}.$$

b) The unit vector \mathbf{v} in the same direction as \mathbf{u} is given by

$$\mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix} = \frac{2}{\sqrt{5}}\mathbf{i} + \frac{1}{\sqrt{5}}\mathbf{j}.$$

So, since f is clearly differentiable at $(\pi, 1)$, we find

$$D_{\mathbf{v}}(\pi, 1) = \mathbf{v} \bullet \nabla f(\pi, 1) = -\frac{2}{\sqrt{5}} - \frac{\pi}{\sqrt{5}} = -\frac{2+\pi}{\sqrt{5}}.$$

2. a) Calculate both first partial derivatives and set them equal to 0:

$$f_x(x,y) = 0 \Longrightarrow 3x^2 - 3y - 9 = 0 \Longrightarrow y = x^2 - 3.$$

$$f_y(x,y) = 0 \Longrightarrow -3x + 6y = 0 \Longleftrightarrow x = 2y.$$

Substitution of x = 2y in the first equation gives $4y^2 - y - 3 = (4y + 3)(y - 1) = 0$. So we find two critical points: $S_1 = (2, 1)$ and $S_2 = (-\frac{3}{2}, -\frac{3}{4})$.

b) For general (x, y) we find

$$f_{xx}(x,y) = 6x, f_{yy}(x,y) = 6$$
 and $f_{xy}(x,y) = -3 = f_{yx}(x,y)$.

So the determinant of the Hesse matrix is

$$f_{xx}(x,y)f_{yy}(x,y) - f_{xy}(x,y)f_{yx}(x,y) = 36x - 9.$$

This implies that S_2 is a saddle point $(f_{xx}f_{yy} - f_{xy}f_{yx} = -63 < 0)$ and that f has a local minimum value in S_1 $(f_{xx}f_{yy} - f_{xy}f_{yx} = 63 > 0)$ and $f_{xx} = 12 > 0)$.

3. Introduce a function $L(x, y, \lambda) = 5x - 3y + \lambda(x^2 + y^2 - 34)$ and find its critical points:

$$\begin{cases}
0 = \frac{\partial L}{\partial x} = 5 + 2\lambda x & (A) \\
0 = \frac{\partial L}{\partial y} = -3 + 2\lambda y & (B) \\
0 = \frac{\partial L}{\partial \lambda} = x^2 + y^2 - 34 & (C)
\end{cases}$$

Since clearly $\lambda \neq 0$ equations (A) and (B) can be rewritten as

$$x = -\frac{5}{2\lambda}$$
 and $y = \frac{3}{2\lambda}$.

Substitution of these values in equation (C) gives

$$\frac{25}{4\lambda^2} + \frac{9}{4\lambda^2} = 34, \quad \text{so} \quad \lambda = \pm \frac{1}{2},$$

which results in two critical points: $S_1 = (x, y, \lambda) = (5, -3, -\frac{1}{2})$ and $S_2 = (x, y, \lambda) = (-5, 3, \frac{1}{2})$. In S_1 the function has its maximum value f(5, -3) = 34 and in S_2 the function has its minimum value f(-5, 3) = -34.

1

4. a) Make a sketch of the domain. Since we cannot antidifferentiate $\sqrt{x}e^x$ with respect to x the inner integral should be over y. We find (use partial integration in the second integral):

$$\int \int_{R} \sqrt{x} e^{x} dA = \int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \sqrt{x} e^{x} dy dx = \int_{0}^{4} \sqrt{x} e^{x} \left[y \right]_{y=-\sqrt{x}}^{y=\sqrt{x}} dx$$
$$= \int_{0}^{4} 2x e^{x} dx = \left[2x e^{x} - 2e^{x} \right]_{x=0}^{x=4} = 6e^{4} + 2.$$

b) Again sketch the domain. S is the part of the disc around (0,0) with radius 2, in the first quadrant and above the line y=x. Using $x=r\cos(\theta), y=r\sin(\theta)$ we get

$$\int \int_{S} \frac{1}{1+x^{2}+y^{2}} dA = \int_{\pi/4}^{\pi/2} \int_{0}^{2} \frac{r}{1+r^{2}} dr d\theta =$$

$$= \int_{\pi/4}^{\pi/2} \left[\frac{1}{2} \ln(1+r^{2}) \right]_{r=0}^{r=2} = \frac{1}{2} \ln 5 \left[\theta \right]_{\theta=\pi/4}^{\theta=\pi/2} = \frac{\pi}{8} \ln 5.$$

- 5. a) $|w| = \sqrt{1+3} = 2$ and $\arg(w) = -\frac{1}{3}\pi$.
 - b) Assume $z = re^{i\phi}$, with r > 0. Then the equation is

$$z^3 = r^3 e^{3i\phi} = 8i = 8e^{i\pi/2} = 8e^{i\pi/2 + 2ki\pi}$$
, with $k \in \mathbb{Z}$

This implies that r=2 and $\phi=\frac{\pi}{6}+\frac{2k\pi}{3},\ k\in\mathbb{Z}$. So the solutions are (choose k=0,1,2):

$$z_1 = 2e^{i\pi/6} = \sqrt{3} + i$$
, $z_2 = 2e^{5i\pi/6} = -\sqrt{3} + i$ and $z_3 = 2e^{3i\pi/2} = -2i$.

[An equivalent method is solving $|z^3|=|8i|$ and $\arg{(z^3)}=\arg{(8i)}+2k\pi$ separately.]

6. First multiply the left hand side and right hand side of the equation with r. Then substitute $x = r \cos \theta$ en $y = r \sin \theta$ (so we have $x^2 + y^2 = r^2$). This gives:

$$r^{2} = 2r\cos\theta \iff x^{2} + y^{2} = 2x \iff (x - 1)^{2} + y^{2} = 1.$$

So the resulting curve is a circle with center (1,0) and radius 1.

7. This is a first order linear differential equation which can be solved by using an integrating factor. First divide the equation by \sqrt{x} and conclude that the integrating factor is $e^{-2\sqrt{x}}$. This gives

$$\frac{d}{dx}\left(y(x)e^{-2\sqrt{x}}\right) = \frac{e^{-\sqrt{x}}}{\sqrt{x}} \Longrightarrow y(x)e^{-2\sqrt{x}} = \int \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = -2e^{-\sqrt{x}} + C.$$

[The last integral can be calculated using the substitution $t = \sqrt{x}$.] So the general solution becomes

$$y(x) = -2e^{\sqrt{x}} + Ce^{2\sqrt{x}}, C \in \mathbb{R}.$$

8. Substitute $y(x) = e^{rx}$. Then the auxiliary equation becomes

$$r^2 - 4r + 13 = (r - 2)^2 + 9 = 0,$$

with complex solutions $r=2\pm 3i$. So the general (real) solution is:

$$y(x) = c_1 e^{2x} \cos(3x) + c_2 e^{2x} \sin(3x), c_1, c_2 \in \mathbb{R}.$$

Substitution of the first initial value gives $0 = y(0) = c_1$. Now

$$y'(x) = 2c_2e^{2x}\sin(3x) + 3c_2e^{2x}\cos(3x),$$

so substitution of the second initial value gives $6 = y'(0) = 3c_2$, so $c_2 = 2$. The solution of the initial value problem is therefore $y(x) = 2e^{2x} \sin(3x)$.