First test Calculus 2, 21 November 2016, Solutions

1. Use the fact that 22" = 4™ and then calculate the limit by dividing numerator and
denominator by 4". We find:
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since lim 2™ =0 for all |z| < 1 and li_}m Z—: = 0 for all k£ (both standard limits). So
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the sequence converges with limit 1.

2. Note that this is a geometrical series. So after rewriting and shifting the index we
have (use 42" = 16™)
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3. a) Let a, = ———— and choose b, = —. Then use the limit comparison test:
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Since }_ by, is divergent (p-series with p =1), > — =7 is also divergent.
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b) Since lim cos (#) = cos (0) = 1 # O the series is divergent (nth-term test).
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c) Use the ratio test and the fact that (n + 1)! = (n + 1)n! and (2n + 2)! =

(2n+2)(2n + 1)(2n)! to find that
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so the series is divergent.

4. We use the ratio test:
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[You can use I'Hospital for calculating the last limit.] So the series converges ab-
solutely for |3z — 1| < 2, that is for —% < z < 1, and diverges for [3z —1| > 2.

Now determine separately the behavior in the endpoints: First take x = 1. We find
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g m which is a divergent series, since ﬁ > - and n22% diverges (p-series
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with p = 1). Here we used the comparison test. Then consider x = —%. We get
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n(n)’ With the alternating series test (the series is clearly alternating and
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sequence {ﬁ} is decreasing with limit 0) we can conclude that this series

converges (conditionally). So the interval of convergence is [—%, 1).
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a) We need the geometrical series 1 = Zt", which converges for all ¢t with
n=0
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|t| < 1, but with the substitution ¢t = %2 to get T @2)2) = Z (g) ; which
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converges for all x with |22/2| < 1, so for |z| < /2. Then we find
x 1 T (22\" =t & n
105 T 3 (7) L e

n=0 n=0 n=0

converging to f(z) for all z with |z| < v/2. Now distinguish between even and
odd n, to get: as, =0 for all n > 0 and aspy1 = 271% for all n > 0.

S n
Since Y anx" is the Taylor series of f(z) about 0, we know that a, = I 72!(0)‘
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So we need n = 7 to find £(7(0) =T7a; =T 5 = 315.
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The distance is given by
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The partial derivatives are —f = i and —f = LY
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The tangent plane passes through P = (1,1, %) Furthermore: %(1, 1) = % and

2—5(1, 1) = _?2. So an equation of the tangent plane is
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z:§+§(x—1)—§(y—l):§x—§y+§, orx—2y—9z+4=0.



