
First test Calculus 2, 21 November 2016, Solutions

1. Use the fact that 22n = 4n and then calculate the limit by dividing numerator and
denominator by 4n. We find:

lim
n→∞

3n + 4n + n

1 + 22n + n3
= lim

n→∞

(
3
4

)n
+ 1 + n

4n(
1
4

)n
+ 1 + n3

4n

= 1

since lim
n→∞

xn = 0 for all |x| < 1 and lim
n→∞

nk

4n = 0 for all k (both standard limits). So

the sequence converges with limit 1.

2. Note that this is a geometrical series. So after rewriting and shifting the index we
have (use 42n = 16n)

∞∑
n=1

3n−141−2n =
∞∑
n=1

3−141
(

3

16

)n

=
4

3

∞∑
n=0

(
3

16

)n+1

=
4

3
· 3

16
· 1

1− 3
16

=
4

13
.

3. a) Let an =
n

n2 + n− 1
and choose bn =

1

n
. Then use the limit comparison test:

lim
n→∞

an
bn

= lim
n→∞

n

n2 + n− 1
÷ 1

n
= lim

n→∞

n2

n2 + n− 1
= lim

n→∞

1

1 + 1
n −

1
n2

= 1.

Since
∞∑
n=1

bn is divergent (p-series with p = 1),
∞∑
n=1

n

n2 + n− 1
is also divergent.

b) Since lim
n→∞

cos
(

1
n2

)
= cos (0) = 1 6= 0 the series is divergent (nth-term test).

c) Use the ratio test and the fact that (n + 1)! = (n + 1)n! and (2n + 2)! =
(2n + 2)(2n + 1)(2n)! to find that

lim
n→∞

(2n + 2)!

(n + 1)!(n + 1)!
÷ (2n)!

n!n!
= lim

n→∞

(2n + 2)(2n + 1)

(n + 1)(n + 1)
= lim

n→∞
2·

2 + 1
n

1 + 1
n

= 4 > 1,

so the series is divergent.

4. We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (3x− 1)n+1

2n+1 ln (n + 1)
÷ (3x− 1)n

2n ln (n)

∣∣∣∣
=

∣∣∣∣3x− 1

2

∣∣∣∣ lim
n→∞

ln (n)

ln (n + 1)
=

∣∣∣∣3x− 1

2

∣∣∣∣ .
[You can use l’Hospital for calculating the last limit.] So the series converges ab-
solutely for |3x− 1| < 2, that is for −1

3 < x < 1, and diverges for |3x− 1| > 2.
Now determine separately the behavior in the endpoints: First take x = 1. We find
∞∑
n=2

1

ln (n)
which is a divergent series, since 1

ln (n) > 1
n and

∞∑
n=2

1
n diverges (p-series

with p = 1). Here we used the comparison test. Then consider x = −1
3 . We get

1



∞∑
n=2

(−1)n

ln (n)
. With the alternating series test (the series is clearly alternating and

the sequence
{

1
ln (n)

}
is decreasing with limit 0) we can conclude that this series

converges (conditionally). So the interval of convergence is [−1
3 , 1).

5. a) We need the geometrical series
1

1− t
=
∞∑
n=0

tn, which converges for all t with

|t| < 1, but with the substitution t = x2

2 to get
1

1− (x2/2)
=

∞∑
n=0

(
x2

2

)n

, which

converges for all x with |x2/2| < 1, so for |x| <
√

2. Then we find

f(x) =
x

2
· 1

1− (x2/2)
=

x

2

∞∑
n=0

(
x2

2

)n

=

∞∑
n=0

x2n+1

2n+1
=

∞∑
n=0

anx
n,

converging to f(x) for all x with |x| <
√

2. Now distinguish between even and
odd n, to get: a2n = 0 for all n ≥ 0 and a2n+1 = 1

2n+1 for all n ≥ 0.

b) Since
∞∑
n=0

anx
n is the Taylor series of f(x) about 0, we know that an = f (n)(0)

n! .

So we need n = 7 to find f (7)(0) = 7! · a7 = 7! · 1
24

= 315.

6. a) u • v = −2 + 0 + 0 = −2 and u× v =

∣∣∣∣∣∣
i j k
2 0 1
−1 3 0

∣∣∣∣∣∣ = −3i− j + 6k =

−3
−1
6

.

b) u •

x− 1
y − 2
z − 3

 = 0, so 2 · (x− 1) + 0 · (y − 2) + 1 · (z − 3) = 0, or 2x + z = 5.

c) The distance is given by

|(2 · 0) + (0 · 1) + (1 · 0)− 5|√
22 + 02 + 12

=
5√
5

=
√

5.

7. a) The partial derivatives are
∂f

∂x
=

y2 − x2 + 1

(x2 + y2 + 1)2
and

∂f

∂y
=

−2xy

(x2 + y2 + 1)2
.

b) The tangent plane passes through P = (1, 1, 13). Furthermore: ∂f
∂x (1, 1) = 1

9 and
∂f
∂y (1, 1) = −2

9 . So an equation of the tangent plane is

z =
1

3
+

1

9
(x− 1)− 2

9
(y − 1) =

1

9
x− 2

9
y +

4

9
, or x− 2y − 9z + 4 = 0.
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