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1. a) Let an =
1 + 2n

n2 − n
√
n+ 3

, choose bn =
1

n
and then use the limit comparison test:

lim
n→∞

an
bn

= lim
n→∞

n+ 2n2

n2 − n
√
n+ 3

= lim
n→∞

1
n + 2

1− 1√
n

+ 3
n2

= 2.

Since
∞∑
n=1

bn is divergent (p-series with p = 1), the series
∞∑
n=1

1 + 2n

n2 − n
√
n+ 3

is

also divergent.

b) Let an =
n!

(2n)!
and use (n+ 1)! = (n+ 1)n! and (2(n+ 1))! = (2n+ 2)! =

(2n+ 2)(2n+ 1)(2n)!. Now use the ratio-test:

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)!

(2(n+ 1))!
÷ n!

(2n)!
=

= lim
n→∞

n+ 1

(2n+ 2)(2n+ 1)
= lim

n→∞

1

2(2n+ 1)
= 0 < 1.

Therefore the series is (absolute) convergent.

2. We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2x− 3)n+1

4n+1
√
n+ 1

∣∣∣∣÷ ∣∣∣∣(2x− 3)n

4n
√
n

∣∣∣∣
=

∣∣∣∣2x− 3

4

∣∣∣∣ lim
n→∞

√
n√

n+ 1
=

∣∣∣∣2x− 3

4

∣∣∣∣ .
So the series converges absolutely for |2x− 3| < 4, that is for −1

2 < x < 7
2 , and

diverges for |x− 3| > 4. Now determine separately the behavior in the endpoints:

First take x = 7
2 . We find

∞∑
n=1

1√
n

which is a divergent series (p-series with p = 1/2).

Then consider x = −1
2 . We get

∞∑
n=1

(−1)n√
n

. With the alternating series test we can

conclude that this series converges (conditionally). So the interval of convergence is
[−1

2 ,
7
2).

3. Use the geometric series
1

1− t
=
∞∑
n=0

tn, which converges for all t ∈ (−1, 1). Substi-

tute t = 2x and multiply the result by x. This yields

f(x) =
x

1− 2x
= x

∞∑
n=0

(2x)n =

∞∑
n=0

2nxn+1 =

∞∑
n=1

2n−1xn,

converging for 2x ∈ (−1, 1), so for x ∈ (−1
2 ,

1
2).
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4. a) u • v = 3 + 0− 2 = 1 and u× v =

 1
5
1

 = i + 5j + k.

b) uv =
u • v
v • v

v =
1

2
v =

 1/2
0
−1/2

 =
1

2
i− 1

2
k.

5. a) Calculate both first partial derivatives and set them equal to 0:

fx(x, y) = 0 =⇒ 2x− 2xy = 0 =⇒ x = 0 or y = 1.

fy(x, y) = 0 =⇒ −x2 − 2y + 6 = 0.

Substitution of x = 0 or y = 1 in the second equation gives three critical points:
S1 = (0, 3), S2 = (2, 1) and S3 = (−2, 1).

b) For general (x, y) we find fxx(x, y) = 2 − 2y, fyy(x, y) = −2 and fxy(x, y) =
−2x = fyx(x, y). So we find fxx(x, y)fyy(x, y)−fxy(x, y)fyx(x, y) = 4(y−x2−1).
This implies that S2 and S3 are saddle points (fxxfyy − fxyfyx < 0) and that f
has a local maximum value in S1 (fxxfyy − fxyfyx > 0 and fxx < 0).

c) The equation of the tangent plane is:

z = f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1) = 3 + 0(x− 1) + 3(y − 1) = 3y.

6. a) Make a sketch of the domain. Then you can easily verify that∫ 1

0

∫ 1

√
y

√
x3 + 1 dx dy =

∫ 1

0

∫ x2

0

√
x3 + 1 dy dx =

∫ 1

0

√
x3 + 1

[
y
]y=x2
y=0

dx

=

∫ 1

0
x2
√
x3 + 1 dx =

[2

9

(
x3 + 1

)3/2 ]x=1

x=0
=

2

9

(
2
√

2− 1
)
.

b) Again sketch the domain. It is the part of the disc around (0, 0) with radius 2,
under the line y = x and above the line y = −x. Using x = r cos (θ), y = r sin (θ)
we get∫ ∫

S

1√
1 + x2 + y2

dA =

∫ π/4

−π/4

∫ 2

0

r√
1 + r2

dr dθ =

∫ π/4

−π/4

[√
1 + r2

]r=2

r=0

=

∫ π/4

−π/4
(
√

5− 1) dθ = (
√

5− 1)[θ
]θ=π/4
θ=−π/4

=
1

2
π(
√

5− 1).

7. Assume z = reiφ, with r > 0. Then our equation is z3 = r3e3iφ = −8i = 8e−iπ/2 =
8e−iπ/2+2kiπ with k ∈ Z. This implies that r = 2 and φ = −π

6 + 2kπ
3 , k ∈ Z. So the

solutions are (choose k = 0, 1, 2):

z1 = 2e−iπ/6 =
√

3− i, z2 = 2eiπ/2 = 2i and z3 = 2e7iπ/6 = −
√

3− i.
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8. This is a linear differential equation of order one. Since
∫
−2x dx = −x2, the inte-

grating factor is e−x
2
. So we can rewrite this equation into(

e−x
2
y(x)

)′
= cos (2x),

with general solution

e−x
2
y(x) =

1

2
sin (2x) + C, thus y(x) =

1

2
ex

2
sin (2x) + Cex

2
, C ∈ R.

Substitution of the initial value gives 1 = y(0) = 0 + C, so C = 1. The solution is
therefore:

y(x) = ex
2

(
1

2
sin (2x) + 1

)
.
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