Resit Calculus 2, 11 February 2016, Solutions

1. a) Let $a_n = \frac{1+2n}{n^2-n\sqrt{n}+3}$, choose $b_n = \frac{1}{n}$ and then use the limit comparison test:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n + 2n^2}{n^2 - n\sqrt{n} + 3} = \lim_{n \to \infty} \frac{\frac{1}{n} + 2}{1 - \frac{1}{\sqrt{n}} + \frac{3}{n^2}} = 2.$$

Since $\sum_{n=1}^{\infty} b_n$ is divergent (*p*-series with p=1), the series $\sum_{n=1}^{\infty} \frac{1+2n}{n^2-n\sqrt{n}+3}$ is also divergent.

b) Let $a_n = \frac{n!}{(2n)!}$ and use (n+1)! = (n+1)n! and (2(n+1))! = (2n+2)! = (2n+2)(2n+1)(2n)!. Now use the ratio-test:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!}{(2(n+1))!} \div \frac{n!}{(2n)!} =$$

$$= \lim_{n \to \infty} \frac{n+1}{(2n+2)(2n+1)} = \lim_{n \to \infty} \frac{1}{2(2n+1)} = 0 < 1.$$

Therefore the series is (absolute) convergent.

2. We use the ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(2x-3)^{n+1}}{4^{n+1}\sqrt{n+1}} \right| \div \left| \frac{(2x-3)^n}{4^n\sqrt{n}} \right|$$
$$= \left| \frac{2x-3}{4} \right| \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1}} = \left| \frac{2x-3}{4} \right|.$$

So the series converges absolutely for |2x-3| < 4, that is for $-\frac{1}{2} < x < \frac{7}{2}$, and diverges for |x-3| > 4. Now determine separately the behavior in the endpoints:

First take $x = \frac{7}{2}$. We find $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a divergent series (p-series with p = 1/2).

Then consider $x = -\frac{1}{2}$. We get $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$. With the alternating series test we can conclude that this series converges (conditionally). So the interval of convergence is $[-\frac{1}{2}, \frac{7}{2})$.

3. Use the geometric series $\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$, which converges for all $t \in (-1,1)$. Substitute t=2x and multiply the result by x. This yields

$$f(x) = \frac{x}{1 - 2x} = x \sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 2^n x^{n+1} = \sum_{n=1}^{\infty} 2^{n-1} x^n,$$

1

converging for $2x \in (-1,1)$, so for $x \in (-\frac{1}{2},\frac{1}{2})$.

4. a)
$$\mathbf{u} \bullet \mathbf{v} = 3 + 0 - 2 = 1$$
 and $\mathbf{u} \times \mathbf{v} = \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} = \mathbf{i} + 5\mathbf{j} + \mathbf{k}$.

b)
$$\mathbf{u}_{\mathbf{v}} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{1}{2} \mathbf{v} = \begin{pmatrix} 1/2 \\ 0 \\ -1/2 \end{pmatrix} = \frac{1}{2} \mathbf{i} - \frac{1}{2} \mathbf{k}.$$

5. a) Calculate both first partial derivatives and set them equal to 0:

$$f_x(x,y) = 0 \Longrightarrow 2x - 2xy = 0 \Longrightarrow x = 0 \text{ or } y = 1.$$

$$f_y(x,y) = 0 \Longrightarrow -x^2 - 2y + 6 = 0.$$

Substitution of x = 0 or y = 1 in the second equation gives three critical points: $S_1 = (0,3), S_2 = (2,1)$ and $S_3 = (-2,1)$.

- b) For general (x,y) we find $f_{xx}(x,y) = 2 2y$, $f_{yy}(x,y) = -2$ and $f_{xy}(x,y) = -2x = f_{yx}(x,y)$. So we find $f_{xx}(x,y)f_{yy}(x,y)-f_{xy}(x,y)f_{yx}(x,y) = 4(y-x^2-1)$. This implies that S_2 and S_3 are saddle points $(f_{xx}f_{yy} f_{xy}f_{yx} < 0)$ and that f has a local maximum value in S_1 $(f_{xx}f_{yy} f_{xy}f_{yx} > 0)$ and $f_{xx} < 0$.
- c) The equation of the tangent plane is:

$$z = f(1,1) + f_x(1,1)(x-1) + f_y(1,1)(y-1) = 3 + 0(x-1) + 3(y-1) = 3y.$$

6. a) Make a sketch of the domain. Then you can easily verify that

$$\int_0^1 \int_{\sqrt{y}}^1 \sqrt{x^3 + 1} \, dx \, dy = \int_0^1 \int_0^{x^2} \sqrt{x^3 + 1} \, dy \, dx = \int_0^1 \sqrt{x^3 + 1} \left[y \right]_{y=0}^{y=x^2} dx$$
$$= \int_0^1 x^2 \sqrt{x^3 + 1} \, dx = \left[\frac{2}{9} \left(x^3 + 1 \right)^{3/2} \right]_{x=0}^{x=1} = \frac{2}{9} \left(2\sqrt{2} - 1 \right).$$

b) Again sketch the domain. It is the part of the disc around (0,0) with radius 2, under the line y=x and above the line y=-x. Using $x=r\cos(\theta)$, $y=r\sin(\theta)$ we get

$$\int \int_{S} \frac{1}{\sqrt{1+x^2+y^2}} dA = \int_{-\pi/4}^{\pi/4} \int_{0}^{2} \frac{r}{\sqrt{1+r^2}} dr d\theta = \int_{-\pi/4}^{\pi/4} \left[\sqrt{1+r^2} \right]_{r=0}^{r=2}$$
$$= \int_{-\pi/4}^{\pi/4} (\sqrt{5}-1) d\theta = (\sqrt{5}-1)[\theta]_{\theta=-\pi/4}^{\theta=\pi/4} = \frac{1}{2}\pi(\sqrt{5}-1).$$

7. Assume $z=re^{i\phi}$, with r>0. Then our equation is $z^3=r^3e^{3i\phi}=-8i=8e^{-i\pi/2}=8e^{-i\pi/2+2ki\pi}$ with $k\in\mathbb{Z}$. This implies that r=2 and $\phi=-\frac{\pi}{6}+\frac{2k\pi}{3},\ k\in\mathbb{Z}$. So the solutions are (choose k=0,1,2):

$$z_1 = 2e^{-i\pi/6} = \sqrt{3} - i$$
, $z_2 = 2e^{i\pi/2} = 2i$ and $z_3 = 2e^{7i\pi/6} = -\sqrt{3} - i$.

 2

8. This is a linear differential equation of order one. Since $\int -2x \, dx = -x^2$, the integrating factor is e^{-x^2} . So we can rewrite this equation into

$$\left(e^{-x^2}y(x)\right)' = \cos(2x),$$

with general solution

$$e^{-x^2}y(x) = \frac{1}{2}\sin(2x) + C$$
, thus $y(x) = \frac{1}{2}e^{x^2}\sin(2x) + Ce^{x^2}$, $C \in \mathbb{R}$.

Substitution of the initial value gives 1 = y(0) = 0 + C, so C = 1. The solution is therefore:

$$y(x) = e^{x^2} \left(\frac{1}{2}\sin(2x) + 1\right).$$