Resit Calculus 2, 11 February 2016, Solutions
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1. a) Leta, = #, choose b, = — and then use the limit comparison test:
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Since S° by is divergent (p-series with p — 1), the series S° ———+ 2"
ince is divergent (p-series wi = 1), the series ————— is
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also divergent.
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b) Let a, = % and use (n+ 1) =(n+1)nland 2(n+ 1)) =(2n+2)! =
n)!
(2n +2)(2n + 1)(2n)!. Now use the ratio-test:
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Therefore the series is (absolute) convergent.

2. We use the ratio test:
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So the series converges absolutely for |2z — 3| < 4, that is for —3 < z < I, and

diverges for |x — 3| > 4. Now determine separately the behavior in the endpoints:
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First take z = % We find Z ——= which is a divergent series (p-series with p = 1/2).
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conclude that this series converges (conditionally). So the interval of convergence is
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. With the alternating series test we can
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3. Use the geometric series 17— Z t", which converges for all ¢t € (—1,1). Substi-
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tute ¢ = 2z and multiply the result by x. This yields
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converging for 2z € (—1,1), so for = € (—%, %)
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5. a) Calculate both first partial derivatives and set them equal to 0:
folz,y) =0=22x—22y=0= 2 =0o0ry=1.

fy(@,y) =0 = —2* —2y +6 = 0.
Substitution of z = 0 or y = 1 in the second equation gives three critical points:
S1=1(0,3), S2 =(2,1) and S3 = (—2,1).
b) For general (z,y) we find fyo(z,y) = 2 — 2y, fyy(z,y) = —2 and foy(x,y) =

—2r = fyx(xa y) So we find fxm(-% y)fyy(xa y)_f:ry(xa y)fyw(xa y) = 4(:’4_332_1)'
This implies that Sy and Ss are saddle points (fzz fyy — foyfyz < 0) and that f
has a local maximum value in Sy (fzzfyy — foyfye > 0 and fr, <0).

c¢) The equation of the tangent plane is:

z=f(L,1)+ fo(1L,1D)(z = 1)+ f,(1,1)(y = 1) =3+ 0(x — 1) +3(y — 1) = 3y.

6. a) Make a sketch of the domain. Then you can easily verify that
1 1 1 pa? 1 — 2
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b) Again sketch the domain. It is the part of the disc around (0,0) with radius 2,
under the line y = z and above the line y = —z. Using z = r cos (6),y = rsin ()

we get
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7. Assume z = re'®, with r > 0. Then our equation is 23 = r3e3i¢’ = —8i = 8¢ I"/2 =
8e~im/2H2kim with k € Z. This implies that 7 = 2 and ¢ = —% + 227k € Z. So the
solutions are (choose k = 0,1,2):

21 =2e /0 = /3 i, 29 =262 =2 and 23 = 2¢7"/6 = —\/3 4.



8. This is a linear differential equation of order one. Since [ —2zdz = —22, the inte-

T

grating factor is e~ *. So we can rewrite this equation into

/
(e_$2y(x)> = cos (2x),
with general solution

2

1 1
e y(x) = 5 sin (2z) + C, thus y(z) = 569”2 sin (2x) + Ce”", C €R.

Substitution of the initial value gives 1 = y(0) = 0+ C, so C' = 1. The solution is
therefore:

y(z) = ¢ (; sin (22) + 1) .



