VU University Amsterdam	Calculus 2, Second Test
Faculty of Sciences	17-12-2015
Department of Mathematics	12.00 - 2.00 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Find

$$\frac{\partial}{\partial x} f(xy^2, x^2y)$$
 and $\frac{\partial^2}{\partial y \partial x} f(xy^2, x^2y)$

in terms of the partial derivatives of the function f, assuming that f has continuous partial derivatives of all orders.

2. The function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by

$$f(x,y) = x^2y - x^2 + y^2 - 4y + 1.$$

- a) Determine all critical points of f.
- b) Indicate for each of the critical points found in part a) if it is a local minimum, a local maximum or a saddle point.
- c) Determine the directional derivative of f in the point (1,2) in the direction of the vector $\mathbf{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
- 3. Find the maximum and minimum value of the function $f(x,y) = e^{xy}$ subject to the constraint $x^3 + y^3 = 16$, or explain why the function has no maximum and/or minimum value subject to this constraint.
- 4. a) Calculate the iterated integral

$$\int_0^1 \int_{y^2}^1 \sqrt{x} e^{x^2} \, dx \, dy.$$

b) The domain $S \subset \mathbb{R}^2$ is given by

$$S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2 \text{ and } y \ge x \}.$$

Calculate, by using polar coordinates

$$\int \int_S \frac{1}{1 + \sqrt{x^2 + y^2}} \, dA.$$

(Please turn over)

- 5. Let $z = -2 + 2\sqrt{3}i$ and w = 2 2i.
 - a) Calculate |z| and |w| and the principal values of the arguments of z and w.
 - b) Write $\frac{z^5}{w^6}$ in the form a + bi, with $a, b \in \mathbb{R}$
- 6. a) Solve the initial value problem:

$$\begin{cases} x\frac{dy}{dx} = (y+1)^2, \\ y(1) = 1. \end{cases}$$

b) Find the general (real) solution y(x) of

$$y'' - 6y' + 13y = 0.$$

Scoring:

Final grade =
$$\frac{(\# \text{ points}) * 3}{10} + 1$$