First test Calculus 2, 16 November 2015, Solutions

1. To get an idea, start with calculating the first terms of the sequence:

81:—1752:—1—%,83:—1—%—%, etc.
n
So it can easily be verified that s, = — > +, which means that the sequence {s,}
k=1

o

contains the (negative of the) partial sums of the harmonic series > 1. Since the
n=1

harmonic series diverges, the sequence {s,} is diverging to —oo.
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2. a) Let a, = M and choose b, = —=. Then use the limit comparison test:
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lima—n:hmM+—:hmM:limﬁ = —.
Since ) by, is divergent (p-series with p = %), the series ) M is also
n=1 n—1 3+4n
divergent.

b) Remark that n? < 2" for all n > 4. Hence, for all n > 4 we have
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n
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Then use the comparison test. Since ) (%) is convergent (geometric series
n=1

: : Xt 42"
with ratio Z) the series Zl
n—=

an is also convergent.

[N.B. You can also use the ratio test to solve this exercise.]

3. a) We use the ratio test:
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So the series converges absolutely for [3z 4+ 1| < 4, that is for —2 < 2 < 1,

and diverges for |3z + 1| > 4. Now determine separately the behavior in the
oo
1
endpoints: First take x = 1. We find E — which is a divergent series (p-series
n
n=1

(=D"

n

o
with p = 1). Then consider = = —g. We get Z

n=1
series test we can conclude that this series converges (conditionally). So the
interval of convergence is [—2,1).
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b) Termwise differentiation (and using the chain rule!) yields
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4. Use the well-known Maclaurin series e! = Z — which converges for all ¢ € R.
n!
n=0

Substitute ¢ = —x2. This yields
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converging for all z € R.
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6. a) A normal vector of the plane is perpendicular to all vectors in that plane. Two
of these vectors are:

1 0 1 1 3 —2
11-12)]=1-1 and 1] - 2 =| -1
0 1 -1 0 -1 1

So a normal vector is given by:
1 —2 —2
-1 x| -1]= 1
-1 1 -3
So an equation of the plane is —2(z—1)+1(y—1) —3(2—0) = 0, or equivalently
2v —y+32z=1.
b) The distance from the point (3,0, —4) to this plane is:

2:3-1-0+43- (-4 -1 |-7 1
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7. a) or = 2263 + 32%ye3™ and of
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b) The tangent plane passes through P = (1,0,1). Further: %(1,0) = 2 and
%(1, 0) = 3. So an equation of the tangent planeis z = 1+2(z—1)+3(y—0) =
2z + 3y — 1. The normal vector to the tangent plane is n = 2i + 3j — 1k. So
the vector notation for the normal line is

T 1 2
y |l =10]+¢ 3 ,teR,
z 1 -1




