
Exercise 1. Consider the function f defined by f(x) = sin
(

π
x+2

)
with domain (0,∞).

a) Prove that f is one-to-one.

b) Determine the domain of f−1.

Solution: First, we want to show that f is one-to-one. The first derivative yields:

f ′(x) (1P)= − π

(x+ 2)2︸ ︷︷ ︸
>0

cos
(

π

x+ 2

)
︸ ︷︷ ︸

>0

(1P)
< 0.

The second inequality holds because π
x+2 ∈ (0, π2 ) for all x ∈ (0,∞). Hence, f is

decreasing on its domain (1P) and therefore f is one-to-one.

As for b), remember that the domain of the inverse coincides with the range of the
function, i.e.:

dom(f−1) (1P)= range(f) = (0, 1),

since sin
(

π

0 + 2

)
= 1 (1P) and lim

x→∞
sin
(

π

x+ 2

)
= sin 0 = 0 (1P).

Exercise 2. The function f is defined by

f(x) = e−x
(
x2 − 2x− 3

)
.

a) Find the maxima and minima of f and classify them as local or absolute.

b) Calculate the x-values of the inflection point(s) of the curve y = f(x).

Solution: We start with a). To find the local minima/maxima, we have to check the
necessary condition first:

0 != f ′(x) (1P)= −e−x
(
x2 − 4x− 1

)
Since the exponential function never crosses zero, it is sufficient to find the roots of the
polynomial. Using the ABC-Formula, we obtain x± = 2±

√
5. (1P) Since f ′(x) < 0 for

x < 2 −
√

5 and x > 2 +
√

5, and f ′(x) > 0 for 2 −
√

5 < x < 2 +
√

5, we find by the
First Derivative Test that (2 −

√
5, f(2 −

√
5) is a minimum and (2 +

√
5, f(2 +

√
5) is

a maximum. (1P) Since limx→−∞ f(x) =∞, x+ cannot be a global maximum. On the
other hand, since limx→∞ f(x) = 0 and f(x−) = e−x−

(
4− 3

√
5
)
< 0, we conclude that

x− must be a global minimum. (1P)
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For part b), we want to find the inflection points of the graph y = f(x). Any inflection
point x must satisfy:

f ′′(x) (1P)= e−x
(
x2 − 6x+ 3

)
= 0.

From the second derivative we infer x± = 3±
√

6 as possible inflection points. (1P) Since
in both points the sign of f ′′(x) changes, we know that both points x± are inflection
points. (1P)

Exercise 3. Calculate limx→0+

(
1
x2 − 1

ln(x+1)

)
.

Solution: Reformulate the expression in order to apply L’Hôspital:

lim
x→0+

( 1
x2 −

1
ln(x+ 1)

)
(1P)= lim

x→0+

(
ln(x+ 1)− x2

x2 ln(x+ 1)

)
Now, we can apply L’Hôspital’s rule (1P) since the limit is of the form “0

0”:

lim
x→0+

(
ln(x+ 1)− x2

x2 ln(x+ 1)

)
(1P)= lim

x→0+

1
x+1 − 2x

2x ln(x+ 1) + x2

x+1

The numerator tends to one while the denominator tends to zero. But since we approach
from the right, the denominator is always positive and the whole expression tends to +∞
(1P).

Exercise 4. Find P2(x), the second Taylor polynomial of f(x) = sin−1 x about x =
√

3
2 .

Solution: In order to obtain the second Taylor polynomial, we require the first two
derivatives of f :

f ′(x) = 1√
1− x2

, f ′′(x) = x

(1− x2)
3
2
.

Now, we have to evaluate these at the expansion point:

f

(√
3

2

)
= π

3 , f
′
(√

3
2

)
= 2, f ′′

(√
3

2

)
= 4
√

3. (1P) + (1P) + (1P)

The Taylor polynomial is hence given by:

P2(x) = f

(√
3

2

)
+ f ′

(√
3

2

)(
x−
√

3
2

)
+
f ′′
(√

3
2

)
2!

(
x−
√

3
2

)2

= 2
√

3
(
x−
√

3
2

)2

+ 2
(
x−
√

3
2

)
+ π

3 . (1P)
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Exercise 5. Compute

a)
∫ π

6

0
sin2(x) cos3(x) dx,

b)
∫ π

−π
x2 cosx dx.

Solution: We start by solving the integral in a):∫ π
6

0
sin2(x) cos3(x) dx =

∫ π
6

0
sin2(x)

(
1− sin2(x)

)
cos(x) dx

(1P)=
∫ 1

2

0
u2
(
1− u2

)
du (1P)=

(
u3

3 −
u5

5

)∣∣∣∣∣
1
2

0

(1P)= 1
23 · 3 −

1
25 · 5

(
= 17

480

)
,

where we substituted u = sin(x) and du = cos(x) dx accordingly.

The integral b) can be solved by using integration by parts twice:∫ π

−π
x2 cosx dx (1P)= x2 sin(x)

∣∣∣π
−π︸ ︷︷ ︸

=0

−2
∫ π

−π
x sin(x) dx

(1P)= 2x cos(x)|π−π︸ ︷︷ ︸
=−4π

− 2
∫ π

−π
cos(x) dx︸ ︷︷ ︸
=0

(1P)= −4π.

Exercise 6. Calculate

a)
∫

x2 + 3
x(x+ 3) dx,

b)
∫

x

x2 − 2x+ 2 dx.

Solution: We want to apply partial fraction decomposition to the integral a). But
before, we have to reformulate the integral in the appropriate manner:∫

x2 + 3
x(x+ 3) dx (1P)=

∫
1 dx︸ ︷︷ ︸
=x

−
∫ 3x− 3
x2 + 3x dx.

Now, we have the following ansatz:

3x− 3
x2 + 3x = A

x
+ B

x+ 3 .
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Due to the lecture, we can solve for A and B using the following trick:

A = lim
x→0�

x
3x− 3

�x(x+ 3) = −1, B = lim
x→−3�

���(x+ 3) 3x− 3
x����(x+ 3) = 4.

Therefore, the result is given by:∫
x2 + 3
x(x+ 3) dx = x+ ln |x| − 4 ln |x+ 3|+ c. (1P) + (1P)

The integral in b) can be solved by completing the square:∫
x

x2 − 2x+ 2 dx (1P)=
∫

x− 1
(x− 1)2 + 1 dx︸ ︷︷ ︸

=:I1

+
∫ 1

(x− 1)2 + 1 dx︸ ︷︷ ︸
=:I2

.

From the lecture and the book we know that

I1 = 1
2 ln

∣∣∣(x− 1)2 + 1
∣∣∣ . (1P)

I2 = tan−1(x− 1). (1P)

Thus, we get: ∫
x

x2 − 2x+ 2 dx = 1
2 ln

∣∣∣(x− 1)2 + 1
∣∣∣+ tan−1(x− 1) + c.

Exercise 7. Is the following statement true or false? Motivate your answer.∫ ∞
1

2 + sin(x2)
x

dx =∞.

Solution: The statement is true. This can be seen as follows. Since

2 + sin(x2)
x

≥ 1
x

for all x ≥ 1, we have∫ ∞
1

2 + sin(x2)
x

dx
(1P)
≥

∫ ∞
1

1
x

dx (1P)= lim
R→∞

lnR− ln 1 (1P)= ∞.
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