VU University Amsterdam	Calculus 1
Faculty of Sciences	First Test
Department of Mathematics	21-09-2020, 13:30-15:45 uur

The use of a calculator, the book, formula tables or lecture notes is <u>not</u> permitted

1. Consider the polynomial

$$P(x) = x^3 - 7x + 6.$$

Show that x-2 is a factor of P, and then find all roots of P.

2. Calculate the following limits, or explain why they do not exist

a)
$$\lim_{x \to \infty} \frac{\sqrt{6x^2 - 4x + 7}}{|3x + 2|}$$
,

b)
$$\lim_{x \to 0} \frac{x \sin x}{\sqrt{1 + x^2} - \sqrt{1 - x^2}}$$
,

c)
$$\lim_{x \to 2} (2\lfloor x \rfloor - 1)$$
.

3. For which real numbers a and b is the function

$$f(x) = \begin{cases} a \cdot \cos(x + \pi/3) & x \le 0\\ x^2 + bx + 1 & x > 0 \end{cases}$$

- a) continuous in x = 0?
- b) differentiable in x = 0?

4. Prove that the equation

$$\tan x + x^3 - \frac{1}{2} = 0$$

has exactly one solution in $[0, \frac{1}{4}\pi]$ by showing that

- a) it has at least one solution in $[0, \frac{1}{4}\pi]$;
- b) it has at most one solution in $[0, \frac{1}{4}\pi]$.

(Please turn over)

5. Consider the graph of the equation

$$3y^2 = x^2 - 2xy.$$

- a) Calculate $\frac{dy}{dx}$ in terms of x and y.
- b) Write down the equation for the tangent line to the graph in the point P(3,1).
- 6. Prove, using the Mean Value Theorem, that for all $0 \le x \le \frac{1}{4}$:

$$2\sqrt{x} - \sin x \ge x.$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{4} + 1$$