
Exercise 1. Consider the polynomial

p(x) = x3 − 7x+ 6.

Show that x− 2 is a factor of p, and then find all roots of p.

Solution: In order to show that x− 2 is a factor of p(x), it is enough to show that 2 is
a root of p(x). Indeed:

p(2) = 23 − 7 · 2 + 6 = 0. (1P)

Thus, p(x) = (x−2)q(x) for some polynomial q(x). Now, determine q(x) by long division
to obtain q(x) = x2 + 2x− 3 (1P). To find the extant roots, we simply apply the ABC
formula (1P) to q(x) and get:

x1,2 = −1± 2. (1P)

Exercise 2. Calculate the following limits, or explain why they do not exist:

a)

lim
x→∞

√
6x2 − 4x+ 7
|3x+ 2| ,

b)
lim
x→0

x sin x√
1 + x2 −

√
1− x2

,

c)
lim
x→2

(2 bxc − 1) .

Solution:

a) We pull out the highest power of x:

lim
x→∞

√
6x2 − 4x+ 7
|3x+ 2|

(1P)= lim
x→∞

√
x2(6− 4

x + 7
x2 )∣∣∣x(3 + 2

x)
∣∣∣ (1P)= lim

x→∞
�x

�x
·

√
6− 4

x + 7
x2∣∣∣3 + 2

x

∣∣∣ (1P)=
√

2
3
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b) We start by expanding the fraction using the third binomial rule:

lim
x→0

x sin x√
1 + x2 −

√
1− x2

(1P)= lim
x→0

x sin x ·
(√

1 + x2 +
√

1− x2
)

(√
1 + x2 −

√
1− x2

)
·
(√

1 + x2 +
√

1− x2
)

(1P)= lim
x→0

x sin x
2x2 ·

(√
1 + x2 +

√
1− x2

)
︸ ︷︷ ︸

x→0−−−→2


(1P)= lim

x→0

sin x
x

(1P)= 1

Here, the latter limit is known from the lecture.

c) The limit does not exist since the left and the right limits are different. To see
that, we have to take a closer look at the floor function bxc which returns the
integer part of x. It is readily checked (and also discussed in the book) that the
floor function is right-continuous but not left-continuous. That given, our left limit
becomes

lim
x→2−

(2 bxc − 1) = 2 b1c − 1

= 1. (1P)

Whereas the right limit yields

lim
x→2+

(2 bxc − 1) = 2 b2c − 1

= 3. (1P)

Thus, the left and right limits are different and the overall limit does not exist.
(1P)

Exercise 3. For which real numbers a and b is the function

f(x) =
{
a cos

(
x+ π

3
)

x ≤ 0,
x2 + bx+ 1 x > 0,

a) continuous at x = 0?

b) differentiable at x = 0?
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Solution: We start with a). The function f is continuous at x = 0 if

lim
x→0

f(x) = f(0). (1P)

As for the left limit, there is nothing to check since a cos
(
x+ π

3
)
is already known to be

continuous. Its value is given by inserting x = 0 right away:

f(0) = a cos
(
π

3

)
= a

2 . (1P)

For the right limit, we get:

lim
x→0+

f(x) = lim
x→0+

(
x2 + bx+ 1

)
= 1.

For continuity, we require f(0) = 1. Therefore a = 2 and the number b can attain any
value. (1P)

Let us proceed with b). Since every differentiable function must be also continuous,
condition a) must already be satisfied, and we can (and must) set a = 2. The function
f is differentiable at x = 0 if the differential quotient

lim
h→0

f(h)− f(0)
h

exists. In particular, the limits from both sides must be equal. (1P) The limit from the
left appears to be the differential quotient for the function 2 cos

(
x+ π

3
)
which is swiftly

calculated using differentiation rules:

d
dx2 cos

(
x+ π

3

)
= −2 sin

(
x+ π

3

)
.

This evaluated at x = 0 yields

lim
h→0−

f(h)− f(0)
h

= −2 sin
(
π

3

)
= −
√

3. (1P)

To obtain the right limit, let us plug in all necessary values:

lim
h→0+

f(h)− f(0)
h

= lim
h→0+

h2 + bh+ �1− �1
h

= b.

Since we require both limits to be the same, we have a = 2 and b = −
√

3. (1P)
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Exercise 4. Prove that the equation

tan x+ x3 − 1
2 = 0

has exactly one solution in [0, π4 ] by showing that

a) it has at least one solution in [0, π4 ],

b) it has at most one solution in [0, π4 ].

Solution: Let us start with a). We define f(x) = tan(x) + x3 − 1
2 . At the boundary,

we obtain the following values:

f(0) = −1
2 < 0, f(π4 ) = 1 + π3

64 −
1
2 > 0. (1P)

Since f is continuous, we conclude from the Intermediate Value Theorem (1P) that f
must have at least one zero in [0, π4 ].

To show b), that is f has at most one solution in [0, π4 ], we go by contradiction. Assume
there are at least two distinct zeros a, b ∈ [0, π4 ], i.e.

f(a) = 0 = f(b).

Since f is differentiable in (0, π4 ), we conclude by the theorem of Rolle (1P) the existence
of an c ∈ (a, b) such that f ′(c) = 0. (1P) But this contradicts the calculation:

f ′(c) = 1
cos2 c

+ 2c2 > 0 for all c ∈
(

0, π4

)
. (1P)

Exercise 5. Consider the graph of the equation

3y2 = x2 − 2xy.

a) Calculate dy
dx in terms of x and y.

b) Write down the equation for the tangent line to the graph in the point (3, 1).

Solution: To facilitate calculations, we reformulate the equation:

3y2 − x2 + 2xy = 0. (1)

As for a), we assume that the set of all points given by (1) can locally be written in
terms of a function y(x). Then, by the chain rule, we obtain:

0 (1P)= d
dx
(
3y2 − x2 + 2xy

)
= 6y′y − 2x+ 2y + 2xy′. (1P + 1P)
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Solving this for y′ = dy
dx , we finally end up with

dy
dx = 2x− 2y

6y + 2x. (1P)

In the second part b), let us recall the general formula for the tangent line:

y = m(x− x0) + y0.

We already know (x0, y0) = (3, 1) from the assumptions in the exercise. The slope m is
simply given by dy

dx evaluated at that point:

m = dy
dx

∣∣∣∣
(3,1)

= 1
3 . (1P)

We conclude

y = 1
3(x− 3) + 1 = x

3 . (1P)

Exercise 6. Prove, using the mean value theorem, that for all 0 ≤ x ≤ 1
4 :

2
√
x− sin x ≥ x.

Solution: Recall the mean value theorem: if a function f is differentiable in the interval
(a, b) and continuous on [a, b], then there is an c ∈ (a, b) such that

f ′(c) = f(b)− f(a)
b− a

. (1P)

First of all, we have to choose f properly. It turns out that

f(x) = 2
√
x− sin x

is a suitable choice. This function is certainly differentiable in (0, 1
4) and moreover

continuous in [0, 1
4 ]. (1P) Now, suppose x ∈

(
0, 1

4

]
, then we get

2
√
x− sin x
x

= f(x)− f(0)
x

= f ′(c)

= 1√
c
− cos c (1P) (2)
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for an c ∈ (0, x). Notice that we have used

f(0) = 2
√

0− sin 0
= 0

Since 0 < c < x < 1
4 , we can estimate

1√
c
− cos c > 2− cos c

≥ 1, (1P)

because |cos c| ≤ 1. The above inequality (2) holds true for any x ∈
(
0, 1

4

]
and hence we

immediately get for those x:

2
√
x− sin x > x.

As for x = 0, we obtain equality and therefore

2
√
x− sin x ≥ x

as desired.
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