Exercise 1. Consider the polynomial
p(z) = 2® — Tz + 6.

Show that x — 2 is a factor of p, and then find all roots of p.

Solution: In order to show that x — 2 is a factor of p(x), it is enough to show that 2 is
a root of p(z). Indeed:

p(2)=2>-7-24+6=0. (1P)

Thus, p(z) = (x—2)q(x) for some polynomial ¢(x). Now, determine g(x) by long division
to obtain ¢(x) = 2% + 2o — 3 (1P). To find the extant roots, we simply apply the ABC
formula (1P) to ¢(z) and get:

219 =—1+2. (1P)

Exercise 2. Calculate the following limits, or explain why they do not exist:

a)
. 622 — 4z + 7
lim ——————,
z—o0 |3z + 2

b)
lim rsinx
2=0 /1 + 22 — /1 — 22’
c)
il—a% (2|x] —1).
Solution:

a) We pull out the highest power of x:
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b) We start by expanding the fraction using the third binomial rule:

rsinx (1P) msina:~(\/1+q;2+\/1_x2)
lim =" lim
VIt —Vl—g? e (\/1+x2 - V1 —:r2> : (\/1—|—x2+\/1_x2>

(1B lim | 28T (\/1—|—x2+\/1—x2)

z—0 21‘2
x—0
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=" lim
z—0 X
1P)
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Here, the latter limit is known from the lecture.

¢) The limit does not exist since the left and the right limits are different. To see
that, we have to take a closer look at the floor function |x| which returns the
integer part of . It is readily checked (and also discussed in the book) that the
floor function is right-continuous but not left-continuous. That given, our left limit
becomes

lim (2[|z]—-1)=2]|1] -1
T—27
=1. (1P)
Whereas the right limit yields
lim (2[z]—-1)=2|2] -1
z—2+

= 3. (1P)

Thus, the left and right limits are different and the overall limit does not exist.
(1P)

Exercise 3. For which real numbers a and b is the function

acos(z+ %) x<0,
fla) = { e s)
+bx+1 x>0,

a) continuous at x = 07

b) differentiable at = = 07



Solution: We start with a). The function f is continuous at z = 0 if

lim f(x) = £(0). (1P)

x—0

As for the left limit, there is nothing to check since a cos (z + g) is already known to be
continuous. Its value is given by inserting x = 0 right away:

f(0) = acos (7‘;) = %. (1P)
For the right limit, we get:

. T 2
lim f(x)= hm+ (a: —|—b:U—|—1)

z—07F z—0

=1.

For continuity, we require f(0) = 1. Therefore a = 2 and the number b can attain any
value. (1P)

Let us proceed with b). Since every differentiable function must be also continuous,
condition a) must already be satisfied, and we can (and must) set a = 2. The function
f is differentiable at « = 0 if the differential quotient

i L0 = £(0)

h—0 h

exists. In particular, the limits from both sides must be equal. (1P) The limit from the
left appears to be the differential quotient for the function 2 cos (z + %) which is swiftly
calculated using differentiation rules:

4, ( +7T) ) in< +7T)
qgplcos|zt+g)="2sin{z+ 7).
This evaluated at x = 0 yields
lim M — _9sin (W>
h—0~ h 3
= —V3. (1P)
To obtain the right limit, let us plug in all necessary values:

_f(h)y—f00) . h*4+bh+)—1
lim —%———~ = lim
h—0+ h h—0+ h

=b.

Since we require both limits to be the same, we have a = 2 and b = —/3. (1P)



Exercise 4. Prove that the equation
1
tanz + 25 — 3= 0
has exactly one solution in [0, §] by showing that

a) it has at least one solution in [0, 7],

b) it has at most one solution in [0, F].

Solution: Let us start with a). We define f(z) = tan(z) + 2% — 5. At the boundary,
we obtain the following values:

1 T 3

f(o):—§<07 f(z)— 61 2 -

Since f is continuous, we conclude from the Intermediate Value Theorem (1P) that f
must have at least one zero in [0, 7].

To show b), that is f has at most one solution in [0, §], we go by contradiction. Assume

there are at least two distinct zeros a,b € [0, 7], i.e.

fla) =0=f(b).
Since f is differentiable in (0, 7 ), we conclude by the theorem of Rolle (1P) the existence
of an ¢ € (a,b) such that f’(¢) = 0. (1P) But this contradicts the calculation:

file) =

+2c¢2>0 forallce (0, Z) . (1P)

cos? ¢

Exercise 5. Consider the graph of the equation

2

3y? = 2% — 2xy.

a) Calculate g—g in terms of z and y.

b) Write down the equation for the tangent line to the graph in the point (3,1).

Solution: To facilitate calculations, we reformulate the equation:

3y — 2% + 22y = 0. (1)

As for a), we assume that the set of all points given by (1) can locally be written in
terms of a function y(xz). Then, by the chain rule, we obtain:

0 (1P % (3y2 —z? 4 ny)

=6y'y — 2z + 2y + 2zy/. (1P + 1P)



—dy
T dx?

Solving this for 7/ we finally end up with

dy 2z -2
de 6y 42z

(1P)

In the second part b), let us recall the general formula for the tangent line:
y =m(z — o) + Yo.

We already know (z9,yo) = (3,1) from the assumptions in the exercise. The slope m is
simply given by % evaluated at that point:

dy 1
m= — =-.(1P
dx (3,1) 3 ( )

We conclude

1
y=-(x—-3)+1=

5 . (1P)

Wy

Exercise 6. Prove, using the mean value theorem, that for all 0 < x < %:

2\/x —sinx > .

Solution: Recall the mean value theorem: if a function f is differentiable in the interval
(a,b) and continuous on [a, b], then there is an ¢ € (a,b) such that

—a

First of all, we have to choose f properly. It turns out that

f(x) =2yr —sinz

is a suitable choice. This function is certainly differentiable in (0, i) and moreover

continuous in |0, %] (1P) Now, suppose x € (0, ﬂ, then we get

2z —sinz _ f(z) ~ f(0)

= f'(c)

= \% —cosc (1P) (2)




for an ¢ € (0,z). Notice that we have used

£(0) =20 — sin0
=0

Since 0 <c<x < %, we can estimate

1
% —cosc > 2 —cosc
> 1, (1P)

because |cosc| < 1. The above inequality (2) holds true for any = € (0, ﬂ and hence we

immediately get for those x:

2/ —sinz > x.
As for z = 0, we obtain equality and therefore

2y —sinz > x

as desired.



