Exercise 1. Consider the polynomial

$$p(x) = x^3 - 7x + 6.$$

Show that x-2 is a factor of p, and then find all roots of p.

Solution: In order to show that x-2 is a factor of p(x), it is enough to show that 2 is a root of p(x). Indeed:

$$p(2) = 2^3 - 7 \cdot 2 + 6 = 0.$$
 (1P)

Thus, p(x) = (x-2)q(x) for some polynomial q(x). Now, determine q(x) by long division to obtain $q(x) = x^2 + 2x - 3$ (1P). To find the extant roots, we simply apply the ABC formula (1P) to q(x) and get:

$$x_{1,2} = -1 \pm 2$$
. (1**P**)

Exercise 2. Calculate the following limits, or explain why they do not exist:

a)
$$\lim_{x \to \infty} \frac{\sqrt{6x^2 - 4x + 7}}{|3x + 2|},$$

b)
$$\lim_{x \to 0} \frac{x \sin x}{\sqrt{1 + x^2} - \sqrt{1 - x^2}},$$

c)
$$\lim_{x \to 2} (2 \lfloor x \rfloor - 1).$$

Solution:

a) We pull out the highest power of x:

$$\lim_{x\to\infty}\frac{\sqrt{6x^2-4x+7}}{|3x+2|}\stackrel{\mathbf{(1P)}}{=}\lim_{x\to\infty}\frac{\sqrt{x^2(6-\frac{4}{x}+\frac{7}{x^2})}}{\left|x(3+\frac{2}{x})\right|}\stackrel{\mathbf{(1P)}}{=}\lim_{x\to\infty}\overset{\mathscr{K}}{\cancel{x}}\cdot\frac{\sqrt{6-\frac{4}{x}+\frac{7}{x^2}}}{\left|3+\frac{2}{x}\right|}\stackrel{\mathbf{(1P)}}{=}\sqrt{\frac{2}{3}}$$

b) We start by expanding the fraction using the third binomial rule:

$$\lim_{x \to 0} \frac{x \sin x}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \stackrel{\text{(1P)}}{=} \lim_{x \to 0} \frac{x \sin x \cdot \left(\sqrt{1 + x^2} + \sqrt{1 - x^2}\right)}{\left(\sqrt{1 + x^2} - \sqrt{1 - x^2}\right) \cdot \left(\sqrt{1 + x^2} + \sqrt{1 - x^2}\right)}$$

$$\stackrel{\text{(1P)}}{=} \lim_{x \to 0} \frac{x \sin x}{2x^2} \cdot \underbrace{\left(\sqrt{1 + x^2} + \sqrt{1 - x^2}\right)}_{\xrightarrow{x \to 0} \ge 2}$$

$$\stackrel{\text{(1P)}}{=} \lim_{x \to 0} \frac{\sin x}{x}$$

$$\stackrel{\text{(1P)}}{=} 1$$

Here, the latter limit is known from the lecture.

c) The limit does not exist since the left and the right limits are different. To see that, we have to take a closer look at the floor function $\lfloor x \rfloor$ which returns the integer part of x. It is readily checked (and also discussed in the book) that the floor function is right-continuous but not left-continuous. That given, our left limit becomes

$$\lim_{x \to 2^{-}} (2 \lfloor x \rfloor - 1) = 2 \lfloor 1 \rfloor - 1$$
$$= 1. (1P)$$

Whereas the right limit yields

$$\lim_{x \to 2^{+}} (2 \lfloor x \rfloor - 1) = 2 \lfloor 2 \rfloor - 1$$
$$= 3. (1P)$$

Thus, the left and right limits are different and the overall limit does not exist. (1P)

Exercise 3. For which real numbers a and b is the function

$$f(x) = \begin{cases} a\cos\left(x + \frac{\pi}{3}\right) & x \le 0, \\ x^2 + bx + 1 & x > 0, \end{cases}$$

- a) continuous at x = 0?
- b) differentiable at x = 0?

Solution: We start with a). The function f is continuous at x = 0 if

$$\lim_{x \to 0} f(x) = f(0). \ (\mathbf{1P})$$

As for the left limit, there is nothing to check since $a\cos\left(x+\frac{\pi}{3}\right)$ is already known to be continuous. Its value is given by inserting x=0 right away:

$$f(0) = a\cos\left(\frac{\pi}{3}\right) = \frac{a}{2}.$$
 (1P)

For the right limit, we get:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 + bx + 1 \right)$$
$$= 1.$$

For continuity, we require f(0) = 1. Therefore a = 2 and the number b can attain any value. (1P)

Let us proceed with b). Since every differentiable function must be also continuous, condition a) must already be satisfied, and we can (and must) set a = 2. The function f is differentiable at x = 0 if the differential quotient

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

exists. In particular, the limits from both sides must be equal. (1P) The limit from the left appears to be the differential quotient for the function $2\cos\left(x+\frac{\pi}{3}\right)$ which is swiftly calculated using differentiation rules:

$$\frac{\mathrm{d}}{\mathrm{d}x}2\cos\left(x+\frac{\pi}{3}\right) = -2\sin\left(x+\frac{\pi}{3}\right).$$

This evaluated at x = 0 yields

$$\lim_{h \to 0^{-}} \frac{f(h) - f(0)}{h} = -2\sin\left(\frac{\pi}{3}\right)$$
$$= -\sqrt{3}. (1P)$$

To obtain the right limit, let us plug in all necessary values:

$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h^2 + bh + 1 - 1}{h}$$
= b.

Since we require both limits to be the same, we have a=2 and $b=-\sqrt{3}$. (1P)

Exercise 4. Prove that the equation

$$\tan x + x^3 - \frac{1}{2} = 0$$

has exactly one solution in $\left[0,\frac{\pi}{4}\right]$ by showing that

- a) it has at least one solution in $[0, \frac{\pi}{4}]$,
- b) it has at most one solution in $[0, \frac{\pi}{4}]$.

Solution: Let us start with a). We define $f(x) = \tan(x) + x^3 - \frac{1}{2}$. At the boundary, we obtain the following values:

$$f(0) = -\frac{1}{2} < 0, \quad f(\frac{\pi}{4}) = 1 + \frac{\pi^3}{64} - \frac{1}{2} > 0.$$
 (1P)

Since f is continuous, we conclude from the Intermediate Value Theorem (1P) that f must have at least one zero in $[0, \frac{\pi}{4}]$.

To show b), that is f has at most one solution in $[0, \frac{\pi}{4}]$, we go by contradiction. Assume there are at least two distinct zeros $a, b \in [0, \frac{\pi}{4}]$, i.e.

$$f(a) = 0 = f(b).$$

Since f is differentiable in $(0, \frac{\pi}{4})$, we conclude by the theorem of Rolle (1P) the existence of an $c \in (a, b)$ such that f'(c) = 0. (1P) But this contradicts the calculation:

$$f'(c) = \frac{1}{\cos^2 c} + 2c^2 > 0$$
 for all $c \in (0, \frac{\pi}{4})$. (1P)

Exercise 5. Consider the graph of the equation

$$3y^2 = x^2 - 2xy.$$

- a) Calculate $\frac{dy}{dx}$ in terms of x and y
- b) Write down the equation for the tangent line to the graph in the point (3,1).

Solution: To facilitate calculations, we reformulate the equation:

$$3y^2 - x^2 + 2xy = 0. (1)$$

As for a), we assume that the set of all points given by (1) can locally be written in terms of a function y(x). Then, by the chain rule, we obtain:

$$0 \stackrel{\text{(1P)}}{=} \frac{\mathrm{d}}{\mathrm{d}x} \left(3y^2 - x^2 + 2xy \right)$$
$$= 6y'y - 2x + 2y + 2xy'. \ (\mathbf{1P} + \mathbf{1P})$$

Solving this for $y' = \frac{dy}{dx}$, we finally end up with

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 2y}{6y + 2x}. \ (\mathbf{1P})$$

In the second part b), let us recall the general formula for the tangent line:

$$y = m(x - x_0) + y_0.$$

We already know $(x_0, y_0) = (3, 1)$ from the assumptions in the exercise. The slope m is simply given by $\frac{dy}{dx}$ evaluated at that point:

$$m = \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(3,1)} = \frac{1}{3}. \ (\mathbf{1P})$$

We conclude

$$y = \frac{1}{3}(x-3) + 1 = \frac{x}{3}$$
. (1P)

Exercise 6. Prove, using the mean value theorem, that for all $0 \le x \le \frac{1}{4}$:

$$2\sqrt{x} - \sin x \ge x.$$

Solution: Recall the mean value theorem: if a function f is differentiable in the interval (a, b) and continuous on [a, b], then there is an $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
. (1P)

First of all, we have to choose f properly. It turns out that

$$f(x) = 2\sqrt{x} - \sin x$$

is a suitable choice. This function is certainly differentiable in $(0, \frac{1}{4})$ and moreover continuous in $[0, \frac{1}{4}]$. (1P) Now, suppose $x \in (0, \frac{1}{4}]$, then we get

$$\frac{2\sqrt{x} - \sin x}{x} = \frac{f(x) - f(0)}{x}$$
$$= f'(c)$$
$$= \frac{1}{\sqrt{c}} - \cos c \ (\mathbf{1P})$$
 (2)

for an $c \in (0, x)$. Notice that we have used

$$f(0) = 2\sqrt{0} - \sin 0$$
$$= 0$$

Since $0 < c < x < \frac{1}{4}$, we can estimate

$$\frac{1}{\sqrt{c}} - \cos c > 2 - \cos c$$
$$\ge 1, \ (\mathbf{1P})$$

because $|\cos c| \le 1$. The above inequality (2) holds true for any $x \in \left(0, \frac{1}{4}\right]$ and hence we immediately get for those x:

$$2\sqrt{x} - \sin x > x.$$

As for x = 0, we obtain equality and therefore

$$2\sqrt{x} - \sin x \ge x$$

as desired.