VU University Amsterdam	Calculus 1
Faculty of Sciences	First Test
Department of Mathematics	23-09-2019, 10:30-13:00 uur

The use of a calculator, the book, formula tables or lecture notes is <u>not</u> permitted

- 1. Determine all x which satisfy the inequality:
 - a) $\frac{6}{x-1} > x$,
 - b) $|2x 3| \ge |x + 3|$.
- 2. Calculate the following limits, if they exist
 - a) $\lim_{x \to -\infty} \frac{2x^3 4x + 9}{|x^3 + 8|}$.
 - b) $\lim_{x \to \infty} (2x \sqrt{4x^2 3x + 5}).$
- 3. Consider the function $f:D(f)\to\mathbb{R}$ defined by:

$$f(x) = \frac{3 - \sqrt{25 - x^2}}{x - 4}.$$

- a) What is the domain D(f) of f?
- b) Does f have a removable singularity? If yes, then write down the continuous extension F of f.
- 4. Prove that the following equation has a solution x in $[0, 2\pi]$:

$$\cos(x) + \frac{x^2}{4\pi} = 0.$$

(Please turn over)

5. Consider the graph of the equation

$$\cos(y) = -\frac{y^2}{x}.$$

- a) Calculate $\frac{dy}{dx}$ in terms of x and y.
- b) Write down the equation for the tangent line to the graph in the point $P(\pi^2, \pi)$.
- 6. Prove, using the Mean Value Theorem, that for all $0 \le x < \frac{\pi}{2}$:

$$\tan\left(x - \frac{x^2}{2\pi}\right) \ge \frac{x}{2}.$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{4} + 1$$