VU University Amsterdam	Calculus 1, Resit
Faculty of Sciences	07-01-2019
Department of Mathematics	18.30 - 21.15 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Consider the function

$$f(x) = x\sqrt{8x - 3x^2}.$$

- a) Calculate the domain D_f of f.
- b) Find the extreme value(s) of f on D_f and classify it/them as local or absolute.
- c) Is the function concave down on its domain? Explain your answer.

2. Calculate the following limits:

a)
$$\lim_{x \to 1} \frac{\sin(\pi x) \ln(x)}{(x-1)^2}$$
.

b)
$$\lim_{x \to \infty} x^2 - \sqrt{x^4 + 5x^2 + x \cos(x)}$$
.

3. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} \sin\left(2x - \frac{1}{6}\pi\right) + 1 & \text{if } x > 0, \\ ax + b & \text{if } x \le 0. \end{cases}$$

- a) For which values of a and b is f continuous at 0? Explain your answer.
- b) For which values of a and b is f differentiable at 0? Explain your answer.

4. The function $f:[0,\infty)\to\mathbb{R}$ is given by

$$f(x) = x^{\sqrt{x}}.$$

- a) Calculate f'(x).
- b) Find the linearization L(x) of f about x = 1.
- c) Is f one-to-one on $[0, \infty)$? Explain your answer.

(Please turn over)

5. Consider the function $f(x) = x^{1/5} = \sqrt[5]{x}$. Use the Mean Value Theorem on the interval [32, 33] to prove that

$$2 < \sqrt[5]{33} < 2.0125.$$

- 6. Find the second-order Taylor polynomial $P_2(x)$ of the function $f(x) = \arctan(\sqrt{x})$ about x = 1.
- 7. Calculate

a)
$$\int \tan(x) \ln(\cos(x)) dx,$$

$$b) \int_1^\infty \frac{6}{x^2 + 3x} \, dx,$$

c)
$$\int_0^1 x \ln(x+1) dx$$
.

8. Determine if the following improper integral is convergent or divergent. Motivate your answer.

$$\int\limits_{0}^{\infty} \frac{2 - \sin\left(x^2\right)}{(1+x)\sqrt{x}} \, dx.$$

Scoring:

$$Final\ grade = \frac{\#\ points}{4} + 1$$