Second test Calculus 1, 22-10-2018, Solutions.

1. a) Use the chain-rule to find that

$$f'(x) = \frac{1}{1 + \sqrt{x}} \cdot \frac{1}{2\sqrt{x}} > 0 \text{ for all } x > 0,$$

so f is increasing on $[0, \infty)$ and therefore one-to-one.

b) First remark that f is continuous and increasing, f(0) = 0 and $\lim_{x \to \infty} f(x) = \infty$, so that the range of f is $[0, \infty)$. The domain of f^{-1} is equal to the range of f, so the domain of f^{-1} is $[0, \infty)$. Now let $y = f^{-1}(x)$. Then

$$x = f(y) = \ln(1 + \sqrt{y}) \Longrightarrow e^x = 1 + \sqrt{y} \Longrightarrow y = f^{-1}(x) = (e^x - 1)^2$$
.

- 2. a) Since $\lim_{x\to 0+} \sqrt{x} \ln(x) = 0$ (standard limit: " x^a wins over $\ln x$ for all a > 0") we also have $\lim_{x\to 0+} x(\ln(x))^2 = \lim_{x\to 0+} (\sqrt{x} \ln(x))^2 = 0$.
 - b) There are no singular points, so we only have to consider critical points, the boundary point x = e and the behavior of f when x tends to 0+ (which is already done in exercise 2a). First calculate the derivative:

$$f'(x) = (\ln(x))^2 + 2\ln(x) = \ln(x)(\ln(x) + 2).$$

Now f'(x) = 0 implies $\ln(x) = 0$, so x = 1, or $\ln(x) = -2$, so $x = e^{-2}$. Now f'(x) > 0 (so f is increasing) on $(0, e^{-2})$ and on (1, e) and f'(x) < 0 (so f is decreasing) on $(e^{-2}, 1)$. We find f(1) = 0, $f(e^{-2}) = 4e^{-2}$ and f(e) = e. Since $\lim_{x \to 0+} \sqrt{x} \ln(x) = 0$, we can conclude: f has an absolute maximum e (for x = e), a local maximum $4e^{-2}$ for $x = e^{-2}$, and an absolute minimum e for e in e.

c) Calculate

$$f''(x) = \frac{2\ln(x)}{x} + \frac{2}{x} = \frac{2(\ln(x) + 1)}{x},$$

so f''(x) < 0 only on $(0, e^{-1})$ and therefore f is concave down on $(0, e^{-1})$.

3. Rewrite the limit to one fraction and remark that we get a 0/0 situation. Then we use l'Hospital's rule twice:

$$\lim_{x \to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x + 1 - e^x}{x(e^x - 1)} =$$
(H) line $1 - e^x$ (H) line $-e^x$

$$\stackrel{(H)}{=} \lim_{x \to 0} \frac{1 - e^x}{x e^x + e^x - 1} \stackrel{(H)}{=} \lim_{x \to 0} \frac{-e^x}{x e^x + 2 e^x} = -\frac{1}{2}.$$

4. a) Calculate f(0) = 1 and $f'(x) = \frac{-2}{(1+2x)^2}$ so f'(0) = -2. Therefore L(x) = f(0) + f'(0)(x-0) = 1 - 2x.

1

b) $L(0.005) = 1 - 2 \cdot 0.005 = 0.99$ which is the linear approximation of $\frac{1}{1.01}$. Since $f''(x) = \frac{8}{(1+2x)^3}$ the error-function is

$$E(x) = \frac{f''(s)(x-0)^2}{2} = \frac{4x^2}{(1+2s)^3}, \text{ with } 0 < s < x.$$

So for the absolute value of the error we have:

$$|E(0.005)| = \left| \frac{4(0.005)^2}{(1+2s)^3} \right| < 4(0.005)^2 = 10^{-4}.$$

5. With the Fundamental Theorem of Calculus and the chain-rule we find:

$$f'(x) = \arctan(4\sin^2(x)) \cdot \cos(x).$$

So (use $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ and $\cos\left(\frac{\pi}{6}\right) = \frac{1}{2}\sqrt{3}$):

$$f'\left(\frac{\pi}{6}\right) = \arctan\left(4\sin^2\left(\frac{\pi}{6}\right)\right) \cdot \cos\left(\frac{\pi}{6}\right) = \arctan\left(1\right) \cdot \frac{1}{2}\sqrt{3} = \frac{1}{8}\pi\sqrt{3}.$$

6. a) Use the trigonometric formula $\cos{(2t)} = 1 - 2\sin^2{(t)}$, so $\sin^2{(t)} = \frac{1}{2} - \frac{1}{2}\cos{(2t)}$:

$$\int \sin^2(3x) \, dx = \int \frac{1}{2} - \frac{1}{2} \cos(6x) \, dx$$
$$= \frac{1}{2}x - \frac{1}{12} \sin(6x) + C.$$

b) We start with calculating an antiderivative. Use integration by parts to find

$$\int \frac{\ln x}{x^3} dx = -\frac{\ln(x)}{2x^2} + \int \frac{1}{2x^3} dx = -\frac{\ln(x)}{2x^2} - \frac{1}{4x^2}.$$

Then we calculate the improper integral:

$$\int_{1}^{\infty} \frac{\ln x}{x^3} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{\ln x}{x^3} dx = \lim_{R \to \infty} \left(-\frac{\ln (R)}{2R^2} - \frac{1}{4R^2} \right) - \left(0 - \frac{1}{4} \right) = \frac{1}{4},$$

since " R^2 wins over $\ln(R)$ if $R \to \infty$ ".

c) Use partial fraction decomposition (taking into account the double linear factor x^2 !):

$$\int_{1}^{2} \frac{3x+2}{x^{2}(x+1)} dx = \int_{1}^{2} \frac{1}{x} + \frac{2}{x^{2}} - \frac{1}{x+1} dx$$
$$= \ln|x| - \frac{2}{x} - \ln|x+1| \Big|_{1}^{2} = 1 + 2\ln(2) - \ln(3).$$

7. This is an improper integral of the first kind. Since $\lim_{x\to\infty} \arctan(x^2) = \frac{\pi}{2} < 2$ we have $\frac{1}{x\arctan(x^2)} > \frac{1}{2x}$, for large values of x. And (p-integral with p=1)

$$\int_{1}^{\infty} \frac{1}{2x} dx = \frac{1}{2} \int_{1}^{\infty} \frac{1}{x} dx \text{ is divergent to } \infty.$$

2

So $\int_{1}^{\infty} \frac{1}{x \arctan(x^2)} dx$ is divergent to ∞ as well.