VU University Amsterdam	Calculus 1, Resit
Faculty of Sciences	05-02-2018
Department of Mathematics	12.00 - 14.45 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Calculate all x which satisfy the inequality

$$\frac{x-1}{x+2} > 3.$$

2. The function $f:(0,\infty)\to\mathbb{R}$ is defined by

$$f(x) = \frac{\ln(x)}{\sqrt{x}}.$$

- a) Calculate $\lim_{x\to 0+} f(x)$ and $\lim_{x\to \infty} f(x)$.
- b) Find the extreme value(s) of f and classify it/them as local or absolute.
- c) Calculate the inflection point(s) of the curve y = f(x).

3. Calculate the following limits, or explain why the limit does not exist:

a)
$$\lim_{x \to 0} \frac{|x^2 - 1| - 1}{\sin(x)}$$
.

b)
$$\lim_{x \to 0} \left(1 + \sin(2x) \right)^{\frac{3}{x}}$$
.

4. The function $f: \mathbb{R} \to \mathbb{R}$ is given by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ x + 2x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0. \end{cases}$$

Use the definition of the derivative to prove that f is differentiable in x = 0 and calculate f'(0).

5. The function $f:(0,\infty)\to\mathbb{R}$ is given by

$$f(x) = 2\sqrt{x} + \ln(x).$$

- a) Prove that f is one-to-one on $(0, \infty)$.
- b) Prove that f has an inverse function g and calculate g'(2).

(Please turn over)

6. Use the Mean Value Theorem to prove that for all x > 0:

$$\sqrt[3]{8+5x} < 2 + \frac{5}{12}x.$$

- 7. Find the second-order Taylor polynomial $P_2(x)$ of the function $f(x) = x \sin(\pi x)$ about x = -1.
- 8. Calculate

a)
$$\int_3^6 \frac{3x^2}{x^2 - x - 2} \, dx$$
,

b)
$$\int_0^1 \arctan(\sqrt{x}) dx$$
.

9. Determine if the following improper integral is convergent or divergent. Motivate your answer.

$$\int_{0}^{\pi} \frac{3 + \cos\left(x\right)}{(1 + x^2)\sqrt{x}} \, dx.$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{4} + 1$$