Resit Calculus 1, 05-02-2018, Solutions.

1. Move every term to the left hand side of the inequality sign and make one fraction:
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The left-hand side can only be negative if one factor is positive and the other is
negative. The first option, 2x + 7 > 0 and = + 2 < 0, yields —g < x < —2. The
other option, 2¢ + 7 < 0 and = 4+ 2 > 0, has no solution. So the solution set is
S = (—%, —2). [Of course you can also organize this sign information in a chart, as
is presented in Adams, section P.1.]
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There are no boundary points and no singular points, so we only have to con-
sider critical points, and the behavior of f when z tends to 0+ or oo (which is
already done in exercise 2a). First calculate the derivative:
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Now f/(x) = 0 implies In (x) = 2, so x = e%. Since f’(z) > 0 (so f is increasing)
on (0, e?) and since f'(z) < 0 (so f is decreasing) on (€2, 00), f has an absolute
maximum in z = e? with value f(e?) = 2. There is no minimum value!

Calculate
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so f”(z) = 0 implies that In (z) = §, thus z = ¢®/3. Since f”(z) < 0 on (0, €%/3)
and since f”(z) > 0 on (e3/3,00), so f(x) changes sign at = = €%/3, the curve
y = f(z) has an inflection point (e/3, %6_4/3).
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In the neighborhood of z = 0 we can write |2 — 1| = 1 — 22. So the limit
becomes:
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since I’Hospitals rule ([J]-situation) gives

lim 31n (1 + sin (2x)) — lim 3- 2C'OS (2x) _s
a0 x 2—0 1+ sin (2z)




4. If f'(0) exists it must be equal to:
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The last limit equals 0 and can be calculated using the squeeze theorem. Since
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and since +|h| tend to 0 if A tends to 0, we find f/(0) = 1.

5. a) Calculate the derivative: f'(x) = %—i—% > 0 for all . So f is strictly increasing
on (0,00) and therefore one-to-one on (0, c0).

b) Since f is one-to-one and differentiable, there exists a differentiable inverse-
function g. Remark that f(1) = 2, so that 1 = g(2). This yields
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6. Choose x > 0 arbitrarily and define the function f(t) = </8 4 5t = (84 5t)'/3. Then
f is continuous on [0, z] and differentiable on (0, x). So according to the Mean Value
Theorem there exists a ¢ in (0, ) such that:
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since ¢ > 0, so 8 + 5¢ > 8 and thus (8 + 5¢)?/3 > 8%/3 = 4,
Now multiply both sides by x and shift 2 to the right-hand side, to find that
m<2—l—%xf0raﬂx>0.

7. Introduce f(x) = zsin (7x) and then calculate
f(=1) = =sin(=m) =0,
J'(z) = sin (7x) + zm cos (rx), so f'(-1)=m,

f"(x) = 27w cos (mz) — xm?sin (rx), so f’(—1) = —2r.

Therefore
Py(z)=7(z+1) — m(z+ 1)

8. a) First use long division and factorize the denominator:
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Now use the method of partial fraction decomposition:
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Equate the coefficients of x and the constant term to obtain A = 4 and B = —1.
So we find

6 6
3xr+6 4 1
S ik B VR L
/3 T e @™ /3 R

6
- 3x+41n|x—2|—1n|m+1y)3:9+51n(4)—1n(7).

b) Use the substitution ¢ = \/z (so dt = ﬁ dz and thus dr = 2\/xdt = 2t dt)

followed by integration by parts:
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9. This is an improper integral of the second kind, but we cannot find an antiderivative
easily. So we use a comparison test. Since on (0, )
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the given integral is also convergent.



