Vrije Universiteit Amsterdam	Calculus 1, Second Test
Faculty of Sciences	23-10-2017
Department of Mathematics	12.00 - 2.00 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. The function $f:(0,\infty)\to\mathbb{R}$ is defined by

$$f(x) = x^2 - 2x^2 \ln x.$$

- a) Calculate $\lim_{x\to 0+} f(x)$ and $\lim_{x\to \infty} f(x)$.
- b) Find the extreme values of f and classify them as local or absolute.
- c) Calculate the inflection point(s) of the curve y = f(x).

2. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{x^5}{x^2 + 1}.$$

- a) Prove that f has an inverse function f^{-1} with domain \mathbb{R} .
- b) Calculate $(f^{-1})'(\frac{1}{2})$.
- 3. Calculate $\lim_{x\to\infty} x (\pi 2 \arctan x)$.
- 4. a) Find L(x), the linearization of $f(x) = \sqrt{x}$ about x = 100.
 - b) Use part a) to find an approximate value for $\sqrt{102}$ and show that the absolute value of the error is less than 0.0005.

(Please turn over)

5. The function $\sinh x$, the hyperbolic sine, is defined by

$$\sinh x = \frac{e^x - e^{-x}}{2}.$$

Find the Maclaurin polynomial of order 2n+1 $(n\in\mathbb{N})$ for $\sinh x.$

[Hint: Use the Taylor formula for e^x at x = 0.]

6. Calculate

a)
$$\int x \arctan x \, dx$$
.

b)
$$\int_{1}^{\sqrt{e}} \frac{\sin(\pi \ln x)}{x} dx.$$

c)
$$\int_{3}^{\infty} \frac{1}{x^2 - 4} \, dx$$
.

7. Determine if the following integral is convergent or divergent. Motivate your answer.

$$\int\limits_{0}^{\infty} \frac{1}{(1+x^3)\sqrt{x}} \, dx.$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{4} + 1$$