Vrije Universiteit Amsterdam	Calculus 1, First Test
Faculty of Sciences	25-09-2017
Department of Mathematics	11.00 am - 13.00 am

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Determine all x which satisfy the inequality

$$\frac{1}{x+1} \le 1 + \frac{x}{2}.$$

2. Prove the given identity:

$$\frac{1 - \cos x}{1 + \cos x} = \tan^2\left(\frac{x}{2}\right).$$

3. Consider the function $f: D_f \to \mathbb{R}$ defined by

$$f(x) = \frac{x}{1 - \sqrt{x^2 + 1}}.$$

- a) Find the (maximal) domain D_f of f.
- b) Is f an even function? Is f an odd function? [Explain your answers.]
- c) On what interval(s) is f increasing? And on what interval(s) is it decreasing?
- d) Calculate the following limits, or explain why the limit does not exist:

$$\lim_{x\to\infty} f(x), \ \lim_{x\to -\infty} f(x) \ \ \text{and} \ \ \lim_{x\to 0} f(x).$$

- e) Find the range R_f of f.
- 4. Calculate the following limits:

a)
$$\lim_{x \to 0} \frac{\sin(2x)}{x^2 + 3x}$$
, b) $\lim_{x \to 2+} \frac{|2x - x^2|}{4 - x^2}$.

(Please turn over)

5. The function $f: \mathbb{R} \to \mathbb{R}$ is given by

$$f(x) = \begin{cases} \tan\left(x + \frac{\pi}{3}\right) & \text{if } x \ge 0, \\ ax + b & \text{if } x < 0. \end{cases}$$

- a) For which values of a and b is f continuous at x = 0?
- b) For which values of a and b is f differentiable at x = 0?

[Explain your answers!]

6. A curve is implicitly given by the equation

$$x^3 - 3xy + y^3 = 1.$$

- a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of x and y.
- b) Calculate the equation of the tangent line to the curve at (x, y) = (1, 0).

Scoring:

Final grade =
$$\frac{\text{\# points}}{3} + 1$$