First test Calculus 1, 25-09-2017, Solutions.

1. Move every term to the left hand side of the inequality sign and make one fraction:

$$\frac{1}{x+1} - 1 - \frac{x}{2} \le 0 \Longrightarrow \frac{2 - 2(x+1) - x(x+1)}{2(x+1)} \le 0$$
$$\Longrightarrow \frac{-x^2 - 3x}{2(x+1)} \le 0 \Longrightarrow \frac{x(x+3)}{2(x+1)} \ge 0.$$

The left-hand side is 0 for x = -3 or x = 0. Furthermore it can only be positive if all three factors are positive (which is true for x > 0), or if one factor is positive and the other two are negative (which is true for -3 < x < -1). So the solution set is $S = [-3, -1) \cup [0, \infty)$. [Of course you can also organize this sign information in a chart, as is presented in Adams, section P.1.]

2. To prove this identity we will mainly use the double-angle formula

$$\cos(2t) = \cos^2(t) - \sin^2(t) = 1 - 2\sin^2(t) = 2\cos^2(t) - 1.$$

[Here we also used the identity $\sin^2(t) + \cos^2(t) = 1$.] Rewriting these formulas gives

$$1 + \cos(2t) = 2\cos^2(t)$$
 and $1 - \cos(2t) = 2\sin^2(t)$.

So we find

$$\frac{1 - \cos(x)}{1 + \cos(x)} = \frac{2\sin^2(x/2)}{2\cos^2(x/2)} = \tan^2\left(\frac{x}{2}\right).$$

- 3. a) Since $x^2 + 1 \ge 1$, the square-root is defined for every $x \in \mathbb{R}$. So we only have to exclude x that make the denominator zero. Solving $1 \sqrt{1 + x^2} = 0$ gives x = 0. So $D_f = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$.
 - b) Since for all $x \in D_f$ we have

$$f(-x) = \frac{-x}{1 - \sqrt{(-x)^2 + 1}} = -\frac{x}{1 - \sqrt{x^2 + 1}} = -f(x),$$

we can conclude that f is an odd function (and not an even function).

c) Calculate the derivative of f on D_f :

$$f'(x) = \frac{1 - \sqrt{x^2 + 1} - \frac{-2x^2}{2\sqrt{x^2 + 1}}}{(1 - \sqrt{x^2 + 1})^2} = \frac{(1 - \sqrt{x^2 + 1})\sqrt{x^2 + 1} + x^2}{(1 - \sqrt{x^2 + 1})^2\sqrt{x^2 + 1}} = \frac{\sqrt{x^2 + 1} - 1}{(1 - \sqrt{x^2 + 1})^2\sqrt{x^2 + 1}} = \frac{1}{(\sqrt{x^2 + 1} - 1)\sqrt{x^2 + 1}}.$$

The derivative is always positive on D_f , so f is increasing on $(-\infty, 0)$ and on $(0, \infty)$ [and nowhere decreasing].

1

d) First the limits to ∞ and $-\infty$. Dividing both numerator and denominator by x gives:

$$\lim_{x \to \infty} \frac{x}{1 - \sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{1}{\frac{1}{x} - \sqrt{1 + \frac{1}{x^2}}} = \frac{1}{0 - 1} = -1.$$

Now since f is an odd function it follows that $\lim_{x\to -\infty} f(x) = 1$ [or just do a similar calculation].

For the third limit we distinguish between $\lim_{x\to 0+}$ and $\lim_{x\to 0-}$. Multiply numerator and denominator by the conjugate of the denominator:

$$\lim_{x \to 0+} \frac{x}{1 - \sqrt{x^2 + 1}} \times \frac{1 + \sqrt{x^2 + 1}}{1 + \sqrt{x^2 + 1}} = \lim_{x \to 0+} \frac{x(1 + \sqrt{x^2 + 1})}{1 - (x^2 + 1)}$$
$$= \lim_{x \to 0+} \frac{1 + \sqrt{x^2 + 1}}{-x} = \frac{2}{0 - 1} = -\infty.$$

Since f is an odd function it follows that $\lim_{x\to 0^-} f(x) = +\infty$ [or just do a similar calculation]. The conclusion is that $\lim_{x\to 0} f(x)$ does not exist.

- e) Combining the results of parts c) and d) the range R_f of f must be $(-\infty, -1) \cup (1, \infty)$.
- 4. a) You can also calculate the limit without the use of the double-angle formula. In that case make use of the fact that $\lim_{x\to 0} \frac{\sin{(2x)}}{2x} = 1$. Otherwise

$$\lim_{x \to 0} \frac{\sin{(2x)}}{x^2 + 3x} = \lim_{x \to 0} \frac{2\sin{(x)}\cos{(x)}}{x(x+3)} = \lim_{x \to 0} 2 \cdot \frac{\sin{(x)}}{x} \cdot \frac{\cos{(x)}}{x+3} = 2 \cdot 1 \cdot \frac{1}{3} = \frac{2}{3}.$$

b) Use the fact that for x > 2 we have $|2x - x^2| = x^2 - 2x$. Then we find

$$\lim_{x \to 2+} \frac{|2x - x^2|}{4 - x^2} = \lim_{x \to 2+} \frac{x^2 - 2x}{4 - x^2} = \lim_{x \to 2+} \frac{x(x - 2)}{(2 - x)(2 + x)} = \lim_{x \to 2+} \frac{-x}{2 + x} = -\frac{1}{2}.$$

5. a) For continuity we must have

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0+} f(x) = f(0) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}.$$

Now

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} ax + b = b$$

while

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \tan\left(x + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}.$$

So $b = \sqrt{3}$ and a can be any real number.

b) First of all f has to be continuous at x = 0, so $b = \sqrt{3}$. Then, for x > 0 we have

$$f'(x) = \frac{1}{\cos^2\left(x + \frac{\pi}{3}\right)}$$
, and therefore $f'_+(0) = \lim_{x \to 0+} f'(x) = \frac{1}{\cos^2\left(\frac{\pi}{3}\right)} = 4$.

And for x < 0 we have f'(x) = a, so also $f'_{-}(x) = a$. Therefore f is differentiable at x = 0 if a = 4 and $b = \sqrt{3}$.

6. a) We use implicit differentiation, the product rule and the chain rule to find:

$$3x^2 - 3y - 3x\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 0. (*)$$

Therefore:

$$(3y^2 - 3x)\frac{dy}{dx} = 3y - 3x^2$$
, which leads to $\frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$.

We continue with this result to find

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{y - x^2}{y^2 - x} \right) = \frac{\left(\frac{dy}{dx} - 2x \right)(y^2 - x) - \left(2y \frac{dy}{dx} - 1 \right)(y - x^2)}{(y^2 - x)^2} \\
= \frac{\left(\frac{y - x^2}{y^2 - x} - 2x \right) \left(y^2 - x \right) - \left(2y \cdot \frac{y - x^2}{y^2 - x} - 1 \right) \left(y - x^2 \right)}{(y^2 - x)^2},$$

which may be simplified a little bit more (but this is not necessary). [You can also continue with implicit differentiation of formula (*) and then substitute $\frac{dy}{dx}$ to find the same result.]

b) The slope of the tangent line is

$$\frac{dy}{dx}\Big|_{(1,0)} = \frac{y-x^2}{y^2-x}\Big|_{(1,0)} = 1.$$

And therefore the equation of the tangent line is y = 1(x-1) + 0 = x - 1.