First test Calculus 1, 25-09-2017, Solutions.

1. Move every term to the left hand side of the inequality sign and make one fraction:
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The left-hand side is 0 for = —3 or = 0. Furthermore it can only be positive

if all three factors are positive (which is true for z > 0), or if one factor is positive
and the other two are negative (which is true for —3 < & < —1). So the solution set
is S =[-3,—1)U[0,00). [Of course you can also organize this sign information in a
chart, as is presented in Adams, section P.1.]

2. To prove this identity we will mainly use the double-angle formula
cos (2t) = cos? (t) — sin? (t) = 1 — 2sin? (t) = 2cos? (t) — 1.
[Here we also used the identity sin? (¢) +cos? (t) = 1.] Rewriting these formulas gives
1+cos(2t) =2cos®(t) and 1 —cos(2t) = 2sin?(t).

So we find

1—cos(z) 2sin®(z/2) x
1 +cos(z) 2cos?(z/2) tan® (5)

3. a) Since 22 + 1 > 1, the square-root is defined for every # € R. So we only have
to exclude z that make the denominator zero. Solving 1 — /1 + 22 = 0 gives
x=0.So Dy =R\ {0} = (—00,0) U (0, 00).

b) Since for all z € Dy we have
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we can conclude that f is an odd function (and not an even function).

c) Calculate the derivative of f on Dy:
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The derivative is always positive on Dy, so f is increasing on (—oo,0) and on
(0,00) [and nowhere decreasing].




d) First the limits to co and —oo. Dividing both numerator and denominator by

a)

b)

a)

T gives:
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Now since f is an odd function it follows that lim f(z) = 1 [or just do a
T—r—00

similar calculation].

For the third limit we distinguish between lim and lim . Multiply numerator
z—0+ z—0—

and denominator by the conjugate of the denominator:
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= lim — = —00.
r—04 —X 0—

Since f is an odd function it follows that li%l f(z) = +o0 [or just do a similar
z—0—

calculation]. The conclusion is that liII(l) f(z) does not exist.
xT—r

Combining the results of parts c¢) and d) the range Ry of f must be (—oo, —1)U
(1, 00).

You can also calculate the limit without the use of the double-angle formula.

In that case make use of the fact that lim anﬂ = 1. Otherwise
z—0 x
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Use the fact that for x > 2 we have |2z — 22| = 22 — 22. Then we find
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For continuity we must have

lim ()= lim f(z)=f(0) = tan (Z) = V3.

z—0— z—0+ 3
Now
lim f(z)= lim ax+b="0
z—0— z—0—
while

lim f(z) = lim tan (ZL’ + E) = tan (E> V3.
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So b = v/3 and a can be any real number.



b)

First of all f has to be continuous at = 0, so b = v/3. Then, for z > 0 we
have

1 , L , _ 1 _
W’ and therefore f+(0) = mll)%l+f (IE) = COSQ (%) = 4.

fi(x) =

And for x < 0 we have f'(x) = a, so also f’ (z) = a. Therefore f is differentiable
at z=0if a =4 and b = V3.

We use implicit differentiation, the product rule and the chain rule to find:

dy dy
322 — 3y — 3z—= + 3> = = 0.
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Therefore:
(3y% — 31‘)@ = 3y — 322, which leads to y_9— z*
dx dr Y2 —=w
We continue with this result to find
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which may be simplified a little bit more (but this is not necessary).

[You can also continue with implicit differentiation of formula (%) and then
substitute % to find the same result.]

The slope of the tangent line is

dy y —

= =1.
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And therefore the equation of the tangent lineis y = 1(z — 1)+ 0=z — 1.



