VU University Amsterdam	Calculus 1, Resit
Faculty of Sciences	10-01-2017
Department of Mathematics	18.30 - 21.15 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Consider the function

$$f(x) = \sqrt{4\sqrt{x} - x}.$$

- a) Calculate the domain of f.
- b) Calculate the extreme values of f on [1, 9].

2. Calculate the following limits, or explain why the limit does not exist:

a)
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}.$$

b)
$$\lim_{x \to 0} \left(1 + \tan(2x) \right)^{\frac{1}{x}}$$
.

3. The function $f: \mathbb{R} \to \mathbb{R}$ is given by

$$f(x) = \begin{cases} \frac{e^{2x} - 1}{x} & \text{if } x \neq 0, \\ 2 & \text{if } x = 0. \end{cases}$$

Use the definition of derivative to prove that f is differentiable in 0 and calculate f'(0).

4. Use the Mean Value Theorem to prove that for all x > 0

$$(1+x)^{3/2} > 1 + \frac{3}{2}x.$$

5. A curve is implicitly given by the equation

$$(x^2 + y^2)^2 = 50xy.$$

Find the equation of the tangent line to the curve at (x, y) = (2, 4).

(Please turn over)

- 6. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x + e^x$.
 - a) Prove that f has an inverse function f^{-1} with domain \mathbb{R} .
 - b) Calculate $(f^{-1})'(1)$.
- 7. Find the second-order Taylor polynomial of $\arctan x$ about x = 1.
- 8. Calculate

a)
$$\int \sqrt{x} \ln x \, dx$$
,

b)
$$\int_0^1 \frac{1}{e^x + 1} dx$$
,

c)
$$\int_{-2}^{\infty} \frac{1}{x^2 + 4x + 8} dx$$
.

9. Determine if the following integral is convergent or divergent. Motivate your answer.

$$\int_{1}^{\infty} \frac{\arctan x}{x\sqrt{x}} \, dx.$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{4} + 1$$