
Second test Calculus 1, 24-10-2016, Solutions.

1. a) There are no boundary points and no singular points, so we only have to con-
sider critical points, and the behavior of f when x tends to −∞ or ∞. First
calculate the derivative

f ′(x) = 2xe−2x − 2x2e−2x = 2x(1− x)e−2x.

So f ′(x) = 0 implies x = 0 or x = 1. Since f ′(x) < 0 (so f is strictly decreasing)
on (−∞, 0) and on (1,∞) and since f ′(x) > 0 (so f is strictly increasing) on
(0, 1), f has an minimum in x = 0 with value f(0) = 0 and a maximum in
x = 1 with value f(1) = e−2. To investigate if these extreme values are local or
absolute, calculate lim

x→∞
f(x) = 0 and lim

x→−∞
f(x) = ∞ (both standard limits).

So we find that 0 is the absolute minimum of f on R and that e−2 is a local
maximum in x = 1.

b) Calculate

f ′′(x) = 2e−2x − 4xe−2x − 4xe−2x + 4x2e−2x = 2(2x2 − 4x+ 1)e−2x,

so f ′′(x) = 0 implies that x = 1± 1
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2

√
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2,∞) and since f ′′(x) < 0 on (1− 1
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√
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√
2) the curve y = f(x)

has two inflection points with x-values x = 1 + 1
2

√
2 and x = 1− 1

2

√
2.

2. a) Use the product-rule to find that

f ′(x) = 1 + 2x arctan (x) > 0 for all x ∈ R,

(since arctan (x) < 0 if x < 0 and arctan (x) > 0 if x > 0, so x arctan (x) ≥ 0)
so f is strictly increasing on R and therefore one-to-one on R. So the inverse-
function f (−1) exists. The domain of f (−1) is equal to the range of f . We know
that f is continuous on R and that

lim
x→−∞

f(x) =∞×
(
−π

2

)
= −∞ and lim

x→∞
f(x) =∞× π

2
=∞,

so the range of f is R, which implies that the domain of f (−1) is also R.

b) Remark that f(1) = π
2 , so that f (−1)(π/2) = 1. This yields

(f (−1))′(π/2) =
1

f ′(f (−1)(π/2))
=

1

f ′(1)
=

1

1 + 2 arctan (1)
=

1

1 + π/2
=

2

2 + π
.

3. First take the natural logarithm of the expression. Then use l’Hospital’s rule on the
resulting expression, and divide numerator and denominator by e2x in the next step:

lim
x→∞

ln
(
e2x + 3x

) 1
4x = lim

x→∞

ln
(
e2x + 3x

)
4x

(H)
= lim

x→∞

2e2x+3
e2x+3x

4
= lim

x→∞

2 + 3e−2x

4(1 + 3xe−2x)
=

2 + 0

4(1 + 0)
=

1

2
.

So the original limit is e
1
2 =
√
e.
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4. a) Calculate 
f(1) = sin (π) = 0,
f ′(x) = π cos (πx), so f ′(1) = −π,
f ′′(x) = −π2 sin (πx), so f ′′(1) = 0,
f ′′′(x) = −π3 cos (πx), so f ′′′(1) = π3.

Therefore

P3(x) = 0− π (x− 1)

1!
+ 0

(x− 1)2

2!
+ π3

(x− 1)3

3!
= −π(x− 1) +

1

6
π3(x− 1)3.

b)

lim
x→1

sin (πx) + πx− π
(x− 1)3

= lim
x→1

−π(x− 1) + 1
6π

3(x− 1)3 +O((x− 1)4) + πx− π
(x− 1)3

= lim
x→1

1
6π

3(x− 1)3 +O((x− 1)4)

(x− 1)3

= lim
x→1

1

6
π3 +O((x− 1)1) =

1

6
π3.

5. a) Use the substitution t = lnx (so dt = 1
x dx):∫

cos (lnx)

x
dx =

∫
cos (t) dt = sin (t) + C = sin (lnx) + C.

b) Factorize the denominator and use partial fraction expansion:∫ 1

0

3x+ 2

x2 − 4
dx =

∫ 1

0

3x+ 2

(x+ 2)(x− 2)
dx

=

∫ 1

0

1

x+ 2
+

2

x− 2
dx = ln |x+ 2|+ 2 ln |x− 2|

∣∣∣1
0

= ln 3 + 2 ln 1− ln 2− 2 ln 2 = ln 3− 3 ln 2.

6. a) Use integration by parts twice. Remember that n ≥ 2, so that xn and xn−1 are
both zero for x = 0. Then we get

In = −xn cos (x)
∣∣∣π/2
0

+

∫ π/2

0
nxn−1 cos (x) dx

= nxn−1 sin (x)
∣∣∣π/2
0
−
∫ π/2

0
n(n− 1)xn−2 sin (x) dx

= n
(π

2

)n−1
− n(n− 1)In−2, for n ≥ 2.

b) First calculate I0 =
∫ π/2
0 sin (x) dx = − cos (x)

∣∣∣π/2
0

= 1. Then use the reduction

formula for n = 4:

I4 = 4
(π

2

)3
− 12I2 = 4

(π
2

)3
− 12

(
2
(π

2

)1
− 2I0

)
=

= 4
(π

2

)3
− 24

(π
2

)
+ 24 =

1

2
π3 − 12π + 24.
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7. This is an improper integral of the first and second kind. So split into two parts (I1
and I2) and consider each part separately:

(i) On [0, 1] : I1 =
1∫
0

e−x√
x
dx. Since

e−x√
x
<

1√
x

and since
1∫
0

1√
x
dx is convergent

(p-integral with p = 1
2), I1 is also convergent.

(ii) On [1,∞) : I2 =
∞∫
1

e−x√
x
dx. Since

e−x√
x
< e−x and since

∞∫
1

e−x dx = lim
R→∞

∫ R

1
e−x dx = lim

R→∞

(
e−1 − e−R

)
= e−1,

so is convergent, I2 is also convergent.

Combining (i) and (ii) we conclude that the given improper integral is convergent.
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