Second test Calculus 1, 24-10-2016, Solutions.

1. a) There are no boundary points and no singular points, so we only have to consider critical points, and the behavior of f when x tends to $-\infty$ or ∞ . First calculate the derivative

$$f'(x) = 2xe^{-2x} - 2x^2e^{-2x} = 2x(1-x)e^{-2x}.$$

So f'(x) = 0 implies x = 0 or x = 1. Since f'(x) < 0 (so f is strictly decreasing) on $(-\infty, 0)$ and on $(1, \infty)$ and since f'(x) > 0 (so f is strictly increasing) on (0, 1), f has an minimum in x = 0 with value f(0) = 0 and a maximum in x = 1 with value $f(1) = e^{-2}$. To investigate if these extreme values are local or absolute, calculate $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to -\infty} f(x) = \infty$ (both standard limits).

So we find that 0 is the absolute minimum of f on \mathbb{R} and that e^{-2} is a local maximum in x = 1.

b) Calculate

$$f''(x) = 2e^{-2x} - 4xe^{-2x} - 4xe^{-2x} + 4x^2e^{-2x} = 2(2x^2 - 4x + 1)e^{-2x},$$

so f''(x)=0 implies that $x=1\pm\frac{1}{2}\sqrt{2}$. Since f''(x)>0 on $(-\infty,1-\frac{1}{2}\sqrt{2})$ and on $(1+\frac{1}{2}\sqrt{2},\infty)$ and since f''(x)<0 on $(1-\frac{1}{2}\sqrt{2},1+\frac{1}{2}\sqrt{2})$ the curve y=f(x) has two inflection points with x-values $x=1+\frac{1}{2}\sqrt{2}$ and $x=1-\frac{1}{2}\sqrt{2}$.

2. a) Use the product-rule to find that

$$f'(x) = 1 + 2x \arctan(x) > 0 \text{ for all } x \in \mathbb{R},$$

(since $\arctan(x) < 0$ if x < 0 and $\arctan(x) > 0$ if x > 0, so $x \arctan(x) \ge 0$) so f is strictly increasing on \mathbb{R} and therefore one-to-one on \mathbb{R} . So the inverse-function $f^{(-1)}$ exists. The domain of $f^{(-1)}$ is equal to the range of f. We know that f is continuous on \mathbb{R} and that

$$\lim_{x \to -\infty} f(x) = \infty \times \left(-\frac{\pi}{2} \right) = -\infty \quad \text{and} \quad \lim_{x \to \infty} f(x) = \infty \times \frac{\pi}{2} = \infty,$$

so the range of f is \mathbb{R} , which implies that the domain of $f^{(-1)}$ is also \mathbb{R} .

b) Remark that $f(1) = \frac{\pi}{2}$, so that $f^{(-1)}(\pi/2) = 1$. This yields

$$(f^{(-1)})'(\pi/2) = \frac{1}{f'(f^{(-1)}(\pi/2))} = \frac{1}{f'(1)} = \frac{1}{1+2\arctan(1)} = \frac{1}{1+\pi/2} = \frac{2}{2+\pi}.$$

3. First take the natural logarithm of the expression. Then use l'Hospital's rule on the resulting expression, and divide numerator and denominator by e^{2x} in the next step:

$$\lim_{x \to \infty} \ln \left(e^{2x} + 3x \right)^{\frac{1}{4x}} = \lim_{x \to \infty} \frac{\ln \left(e^{2x} + 3x \right)}{4x}$$

1

$$\stackrel{(H)}{=} \lim_{x \to \infty} \frac{\frac{2e^{2x} + 3}{e^{2x} + 3x}}{4} = \lim_{x \to \infty} \frac{2 + 3e^{-2x}}{4(1 + 3xe^{-2x})} = \frac{2 + 0}{4(1 + 0)} = \frac{1}{2}.$$

So the original limit is $e^{\frac{1}{2}} = \sqrt{e}$.

4. a) Calculate

$$\begin{cases} f(1) = \sin(\pi) = 0, \\ f'(x) = \pi \cos(\pi x), & \text{so } f'(1) = -\pi, \\ f''(x) = -\pi^2 \sin(\pi x), & \text{so } f''(1) = 0, \\ f'''(x) = -\pi^3 \cos(\pi x), & \text{so } f'''(1) = \pi^3. \end{cases}$$

Therefore

$$P_3(x) = 0 - \pi \frac{(x-1)}{1!} + 0 \frac{(x-1)^2}{2!} + \pi^3 \frac{(x-1)^3}{3!} = -\pi (x-1) + \frac{1}{6} \pi^3 (x-1)^3.$$

b)

$$\lim_{x \to 1} \frac{\sin(\pi x) + \pi x - \pi}{(x - 1)^3} = \lim_{x \to 1} \frac{-\pi(x - 1) + \frac{1}{6}\pi^3(x - 1)^3 + O((x - 1)^4) + \pi x - \pi}{(x - 1)^3}$$

$$= \lim_{x \to 1} \frac{\frac{1}{6}\pi^3(x - 1)^3 + O((x - 1)^4)}{(x - 1)^3}$$

$$= \lim_{x \to 1} \frac{1}{6}\pi^3 + O((x - 1)^1) = \frac{1}{6}\pi^3.$$

5. a) Use the substitution $t = \ln x$ (so $dt = \frac{1}{x} dx$):

$$\int \frac{\cos(\ln x)}{x} dx = \int \cos(t) dt = \sin(t) + C = \sin(\ln x) + C.$$

b) Factorize the denominator and use partial fraction expansion:

$$\int_0^1 \frac{3x+2}{x^2-4} dx = \int_0^1 \frac{3x+2}{(x+2)(x-2)} dx$$

$$= \int_0^1 \frac{1}{x+2} + \frac{2}{x-2} dx = \ln|x+2| + 2\ln|x-2| \Big|_0^1$$

$$= \ln 3 + 2\ln 1 - \ln 2 - 2\ln 2 = \ln 3 - 3\ln 2.$$

6. a) Use integration by parts twice. Remember that $n \geq 2$, so that x^n and x^{n-1} are both zero for x = 0. Then we get

$$I_n = -x^n \cos(x) \Big|_0^{\pi/2} + \int_0^{\pi/2} nx^{n-1} \cos(x) dx$$
$$= nx^{n-1} \sin(x) \Big|_0^{\pi/2} - \int_0^{\pi/2} n(n-1)x^{n-2} \sin(x) dx$$
$$= n\left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}, \quad \text{for } n \ge 2.$$

b) First calculate $I_0 = \int_0^{\pi/2} \sin(x) dx = -\cos(x) \Big|_0^{\pi/2} = 1$. Then use the reduction formula for n = 4:

$$I_4 = 4\left(\frac{\pi}{2}\right)^3 - 12I_2 = 4\left(\frac{\pi}{2}\right)^3 - 12\left(2\left(\frac{\pi}{2}\right)^1 - 2I_0\right) =$$

$$= 4\left(\frac{\pi}{2}\right)^3 - 24\left(\frac{\pi}{2}\right) + 24 = \frac{1}{2}\pi^3 - 12\pi + 24.$$

- 7. This is an improper integral of the first and second kind. So split into two parts $(I_1$ and $I_2)$ and consider each part separately:
 - (i) On [0,1]: $I_1 = \int_0^1 \frac{e^{-x}}{\sqrt{x}} dx$. Since $\frac{e^{-x}}{\sqrt{x}} < \frac{1}{\sqrt{x}}$ and since $\int_0^1 \frac{1}{\sqrt{x}} dx$ is convergent $(p\text{-integral with } p = \frac{1}{2})$, I_1 is also convergent.
 - (ii) On $[1,\infty)$: $I_2 = \int_1^\infty \frac{e^{-x}}{\sqrt{x}} dx$. Since $\frac{e^{-x}}{\sqrt{x}} < e^{-x}$ and since

$$\int_{1}^{\infty} e^{-x} dx = \lim_{R \to \infty} \int_{1}^{R} e^{-x} dx = \lim_{R \to \infty} \left(e^{-1} - e^{-R} \right) = e^{-1},$$

so is convergent, I_2 is also convergent.

Combining (i) and (ii) we conclude that the given improper integral is convergent.