
Resit Calculus 1, 05-01-2016, Solutions.

1. a) The limit does not exist. Distinguish between lim
x→0−

and lim
x→0+

and use
√
x2 + x3 =

√
x2
√

1 + x = |x|
√

1 + x and the standard limit lim
x→0

sin (x)

x
= 1 to find

lim
x→0−

√
x2 + x3

sin (x)
= lim

x→0−

√
1 + x · −x

sin (x)
= −1,

while

lim
x→0+

√
x2 + x3

sin (x)
= lim

x→0+

√
1 + x · x

sin (x)
= 1,

so the limits are not equal and so the original limit does not exist.

b) Multiply numerator and denominator by the expression x−
√
x2 + 3x+ 1, then

divide numerator and denominator by x and use
√
x2 = −x for x < 0 to get

lim
x→−∞

x+
√
x2 + 3x+ 1 = lim

x→−∞
x+

√
x2 + 3x+ 1 · x−

√
x2 + 3x+ 1

x−
√
x2 + 3x+ 1

= lim
x→−∞

−3x− 1

x−
√
x2 + 3x+ 1

= lim
x→−∞

−3− 1
x

1 +
√

1 + 3
x + 1

x2

= −3

2
.

2. a) Since f(0) = 1 and f ′(x) = ex cos (x)− ex sin (x), so f ′(0) = 1, we find L(x) =
f(0) + f ′(0)(x− 0) = 1 + x.

b) There are no singular points, so we only have to consider critical points, and two
boundary points. First f ′(x) = 0 implies cos (x) = sin (x), so tan (x) = 1, with
only solution x = π

4 on the given interval. Since f ′(x) > 0 (so f is increasing)
on [−1

2π,
π
4 ] and f ′(x) < 0 (so f is decreasing) on [14π,

π
2 ], f has an absolute

maximum in x = π
4 with value 1

2

√
2e

π
4 . And f has its absolute minimum value

in the boundary points of the interval: f(−π
2 ) = f(π2 ) = 0.

c) Calculate f ′′(x) = −2ex sin (x), so f ′′(x) = 0 implies that x = 0 (on the given
interval). Since f ′′(x) > 0 on [−π

2 , 0) and f ′′(x) < 0 on (0, π2 ] the curve y = f(x)
has an inflection point (0, 1).

3. For continuity we must have:

lim
x→0

fc(x) = fc(0) = c.

We calculate the one-sided limits:

lim
x→0−

f(x) = c and lim
x→0+

f(x) =
√
c.

The equation c =
√
c has solutions c = 0 and c = 1. So if we choose c = 0 or c = 1

the function is continuous at x = 0.
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4. a) Calculate the derivative:

f ′(x) =

√
x2 + 4− 2x2

2
√
x2+4

x2 + 4
=

4

(x2 + 4)
√
x2 + 4

> 0 for all x.

So f is strictly increasing on R and therefore one-to-one on R.

b) Since f is one-to-one, there exists an inverse-function f (−1). The domain of
f (−1) is equal to the range of f . We know that f is continuous and increasing
on R and that

lim
x→ −∞

f(x) = −1 and lim
x→∞

f(x) = 1,

so the range of f is (−1, 1), which implies that the domain of f (−1) is also
(−1, 1).

c) Remark that f(0) = 0, so that 0 = f (−1)(0). This yields

(f (−1))′(0) =
1

f ′(f (−1)(0))
=

1

f ′(0)
=

1
4

4
√
4

= 2.

5. Note that (1, 0) does lie on he given curve. We use implicit differentiation, the
product rule and the chain rule to find:

dy

dx
− sin (y) · dy

dx
= 2x+

1

x
.

So the slope of the tangent line is:

dy

dx

∣∣∣
(1,0)

=
2x+ 1

x

1− sin (y)

∣∣∣
(1,0)

=
3

1
= 3.

And therefore the equation of the tangent line is y = 0 + 3(x− 1) = 3x− 3.

6. If f ′(0) exists it must be equal to:

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h
√
|h| sin (ln |h|)− 0

h
= lim

h→0

√
|h| sin (ln |h|).

The last limit equals 0 and can be calculated using the squeeze theorem. Since

−
√
|h| ≤

√
|h| sin (ln |h|) ≤

√
|h|

and since ±
√
|h| tend to 0 if h tends to 0, we find f ′(0) = 0.

7. We define f(x) = sin (x)+cos (x)−3x+2 which is a differentiable (thus continuous)
function on R. First we will prove that the equation f(x) = 0 has at least one
solution. Consider the interval [0, π]. Then f(0) = 2 > 0 and f(π) = 1 − 3π < 0.
Since f is continuous on [0, π] the Intermediate Value Theorem implies that there
exists a c ∈ (0, π) where f(c) = 0.
Next we will prove that the equation f(x) = 0 has at most one solution. Therefore
consider f ′(x) = cos (x) − sin (x) − 3 < 0 for all x, so f is strictly decreasing on R
and therefore we have at most one d ∈ R where f(d) = 0.
Combining both results proves that the equation has exactly one (real) solution.
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8. a) Use the substitution t =
√
x (so dt = 1

2
√
x
dx and thus dx = 2

√
x dt = 2t dt)

followed by integration by parts:∫
e
√
x dx =

∫
2tet dt = 2tet −

∫
2et dt

= 2tet − 2et + C = 2
√
xe
√
x − 2e

√
x + C.

b) This is an improper integral, so:∫ ∞
1

1

x3 + x2
dx = lim

R→∞

∫ R

1

1

x3 + x2
dx = lim

R→∞

∫ R

1

1

x2(x+ 1)
dx.

Now use the method of partial fractions:

1

x2(x+ 1)
=
A

x
+
B

x2
+

C

x+ 1
=
Ax(x+ 1) +B(x+ 1) + Cx2

x2(x+ 1)
.

Equate the coefficients of x2, x and the constant term to obtain respectively:

A+ C = 0, A+B = 0 and B = 1,

with solution A = −1, B = 1 and C = 1. So we find∫ ∞
1

1

x3 + x2
dx = lim

R→∞

∫ R

1
−1

x
+

1

x2
+

1

x+ 1
dx

= lim
R→∞

− ln |x| − 1

x
+ ln |x+ 1|

∣∣∣R
1

= lim
R→∞

− ln (R)− 1

R
+ ln (R+ 1) + 1− ln 2

= lim
R→∞

ln

(
R+ 1

R

)
− 1

R
+ 1− ln 2 = 1− ln 2.
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