Second test Calculus 1, 19-10-2015, Solutions.

1. a) Use the product-rule to find that

$$f'(x) = \sqrt{x^2 + 3} + \frac{x^2}{\sqrt{x^2 + 3}} = \frac{2x^2 + 3}{\sqrt{x^2 + 3}} > 0$$
 for all x ,

so f is strictly increasing on $\mathbb R$ and therefore one-to-one on $\mathbb R$.

b) Since f is one-to-one, there exists an inverse-function $f^{(-1)}$. The domain of $f^{(-1)}$ is equal to the range of f. We know that f is continuous on \mathbb{R} and that

$$\lim_{x \to -\infty} f(x) = -\infty$$
 and $\lim_{x \to \infty} f(x) = \infty$,

so the range of f is \mathbb{R} , which implies that the domain of $f^{(-1)}$ is also \mathbb{R} .

c) Remark that f(0) = 0, so that $0 = f^{(-1)}(0)$. This yields

$$(f^{(-1)})'(0) = \frac{1}{f'(f^{(-1)}(0))} = \frac{1}{f'(0)} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3}.$$

2. a) There are no singular points, so we only have to consider critical points, one boundary point and the behavior of f near x = 0. Calculate the derivative

$$f'(x) = 2x \ln(x) + x^2 \cdot \frac{1}{x} = x(2\ln(x) + 1).$$

So f'(x) = 0 implies $x = e^{-\frac{1}{2}}$. Since f'(x) < 0 (so f is decreasing) on $(0, e^{-\frac{1}{2}})$ and f'(x) > 0 (so f is increasing) on $(e^{-\frac{1}{2}}, e)$, f has an absolute minimum in $x = e^{-\frac{1}{2}}$ with value $-\frac{1}{2}e^{-1}$. For the absolute maximum we consider $f(e) = e^2$ and $\lim_{x\to 0+} f(x) = 0$ (standard limit). So we find that e^2 is the absolute maximum of f on (0, e].

b) Calculate $f''(x) = 2\ln(x) + 3$, so f''(x) = 0 implies that $x = e^{-\frac{3}{2}}$. Since f''(x) < 0 on $(0, e^{-\frac{3}{2}})$ and f''(x) > 0 on $(e^{-\frac{3}{2}}, e)$ the curve y = f(x) has an inflection point $(e^{-\frac{3}{2}}, -\frac{3}{2}e^{-3})$.

3. a) Use the fact that $\ln(x^2 e^x) = \ln(x^2) + \ln(e^x) = 2\ln(x) + x$, so that

$$\lim_{x \to \infty} \left(x^2 - \ln\left(x^2 e^x\right) \right) = \lim_{x \to \infty} x^2 \left(1 - \frac{2\ln\left(x\right)}{x^2} - \frac{1}{x} \right) = \infty \cdot 1 = \infty,$$

since $\lim_{x\to\infty} \frac{2\ln(x)}{x^2} = 0$ (standard limit, or with l'Hospital).

b) Use $a^b = e^{b \ln{(a)}}$:

$$\lim_{x \to 0} \left(1 + \sin(x) \right)^{1/x} = \lim_{x \to 0} e^{\frac{\ln(1 + \sin(x))}{x}} = e,$$

since l'Hospital $(\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ -situation) gives

$$\lim_{x \to 0} \frac{\ln(1 + \sin(x))}{x} = \lim_{x \to 0} \frac{\cos(x)}{1 + \sin(x)} = 1.$$

1

- 4. a) Calculate f(1) = 1, $f'(x) = -\frac{1}{x^2}$, so f'(1) = -1, and $f''(x) = \frac{2}{x^3}$, so f''(1) = 2. Therefore $P_2(x) = 1 - (x - 1) + (x - 1)^2$.
 - b) First we need $f^{(3)}(x) = -\frac{6}{x^4}$. Taylor's theorem gives

$$f(x) = P_2(x) + E_2(x)$$
, with error-function $E_2(x) = \frac{f^{(3)}(s)}{3!}(x-1)^3$,

with 1 < s < x or x < s < 1. We use x = 1.02, which gives the approximation $P_2(1.02) = 1 - 0.02 + (0.02)^2 = 0.9804$. The absolute value of the error is

$$|E_2(1.02)| = \left| \frac{-6/s^4}{6} (0.02)^3 \right| = \left| \frac{(0.02)^3}{s^4} \right| < (0.02)^3,$$

since 1 < s < 1.02, so $\frac{1}{1.02} < \frac{1}{s} < 1$ and $\frac{1}{(1.02)^4} < \frac{1}{s^4} < 1$.

5. With the Fundamental Theorem of Calculus, the chain-rule and the product-rule:

$$f'(x) = 3 \int_{4}^{x^2} e^{-\sqrt{t}} dt + 3x \cdot e^{-\sqrt{x^2}} \cdot 2x,$$

So

$$f'(2) = 3 \int_{4}^{4} e^{-\sqrt{t}} dt + 6 \cdot e^{-2} \cdot 4 = 0 + 24e^{-2} = 24e^{-2}$$

6. a) Use the substitution $t = \sqrt{x}$ (so $dt = \frac{1}{2\sqrt{x}} dx$ and therefore $dx = 2\sqrt{x} dt = 2t dt$) followed by integration by parts:

$$\int \sqrt{x} \cos(\sqrt{x}) dx = \int 2t^2 \cos(t) dt = 2t^2 \sin(t) - \int 4t \sin(t) dt$$

$$= 2t^2 \sin(t) + 4t \cos(t) - \int 4 \cos(t) dt = 2t^2 \sin(t) + 4t \cos(t) - 4 \sin(t) + C$$

$$= 2x \sin(\sqrt{x}) + 4\sqrt{x} \cos(\sqrt{x}) - 4 \sin(\sqrt{x}) + C.$$

b) Factorize the denominator and use partial fraction expansion:

 2

$$\int \frac{x}{x^2 + x - 20} dx = \int \frac{x}{(x+5)(x-4)} dx$$
$$= \int \frac{5/9}{x+5} + \frac{4/9}{x-4} dx = \frac{5}{9} \ln|x+5| + \frac{4}{9} \ln|x-4| + C.$$

c) This is an improper integral, so:

$$\int_{5}^{\infty} \frac{1}{x^2 + 25} dx = \lim_{R \to \infty} \int_{5}^{R} \frac{1}{x^2 + 25} dx = \lim_{R \to \infty} \int_{5}^{R} \frac{1/25}{(x/5)^2 + 1} dx = \lim_{R \to \infty} \frac{1}{5} \arctan\left(\frac{x}{5}\right)\Big|_{5}^{R} = \lim_{R \to \infty} \frac{1}{5} \left(\arctan\left(\frac{R}{5}\right) - \arctan\left(\frac{5}{5}\right)\right) = \frac{1}{5} \left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{\pi}{20}.$$