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Exam-0-4

Problem 1 (20 points)
You are given the following five unadjusted p-values for testing Hy, ..., Hs

0.99734, 0.60008, 0.13896, 0.00773, 0.00097,

where 0.99734 is the p-value for Hy, 0.60008 is the p-value for Hy and so on. Calculate Bonferroni,
Holm, and Benjamini and Hochberg adjusted p-values. For each of the three methods decide which
hypotheses we reject if we use o = 0.05.

Problem 2 (10 + 10 points)
Assume that the cumulative distribution function of the random variable X is given by

2
Fy\(x) =1—exp (— (;) ) , x>0, and zero otherwise,

where A > 0. For testing
H:X<2 A:)X2>2

we use, based on a sample X of size 1, the test statistic T(X) = X? and we reject H at level « if
X exceeds the critical value c¢(a).

(i) Find the critical value c(«) if we test at a = 0.05;
(ii) Calculate the power of the test at A\ = 4.

Problem 3 (10 points)
For 0 < p < 1 consider the following probability distribution

P(Y _ ) _ (1 _p)y—lp

== — f =1,...,10
y 1_(1_p)107 Ory ? ? I

which takes only the values 1,2,...,10. In other words the probability mass function g} of this
random variable is ( o
1—p)' 'p
P _ _
gy(y) = w, fory— 1,,10

In class (Lecture 6) we discussed a particular form for probability mass functions given by

)= (9220

G
where § € © and v are real-valued parameters, D is the support of the distribution of Y, and b
and ¢ are real-valued functions. Is it possible to write g}, in this form?

_C(wvy)) ) yGD,

Problem 4 (7.5+7.5 points)
In class we related the expectation of a random variable Y to a linear function 2?21 Bj z; using a
link function h. Assume that the distribution of Y is given by

]P’(Y:k):(l—p)k_lp, for k=1,2,...,

1



where we have for the parameter p that 0 < p < 1. This implies that the expectation of E[Y] equals

For each of the following alternative choices of the link function h, argue if it is meaningful to use
them to relate E[Y] and Z;l:l Bjx; by E[Y] = h(z;l:l Bjxj). Explain your answer.

(i) hi(x) =|z|+ 1, z € R;
(i) ho(z) = m y?dy, x € R.

Problem 5 (7.5+7.5 points)
Assume our data come from the linear model

60
V=) BiXij+e,i=1,...,10,
j=1

with €;, 1 <1 < 10, independent and normally distributed with expectation zero and variance o2.

Unfortunately the observations y1,...,y10, and x11, ..., 21060 were lost. What is known is that the
X;; were independent and each normally distributed with expectation 2 and variance 10. A friend
of you tells you that he was additionally given the following two vectors

(i) B=(Bi,..-,B60) with B; =1+ j for j =1,...,12 and 3; = 0 otherwise;
(ii) B=(P1,...,P60) with 3; =147 for j =1,...,5, 59 = 2.5 and f3; = 0 otherwise.

Given this information only decide for both 8 and é whether they could potentially be the solution
to the following minimization problem

2
1 10 60
minimize w.r.t. 3 : E Yi — E Bjxij | +3 E 185,
i=1 j=1
where y1,...,y10 and x11,...,%1060 are the unknown observations.

Explain your answers briefly.

Problem 6 (10 points)
We discussed in class that there can be multiple solutions to the (LASSO) minimization problem

n

2
d
minimize w.r.t. 3 : nz Yi — Zﬁg%y +)\Zl|5j|-
]:

1=1

Let Bl and B2 be two different solutions for this minimization problem. Prove or disprove that
X ,6'1 X ,82 where, as usual, X is the design matrix.
Hints: Xﬂl and XHQ are in R™, the mapping z — ||y — z||3 is strictly ..



Problem 7 (10 points)

For k =1,...,5 let I} be a confidence interval for 0, k = 1,...,5, with coverage probability 1 — «.
Assuming that the I are independent how do we need to choose « such that I; X ... X I5 is a simul-
taneous confidence interval for (01,...,605) at level 95% (, i.e. P((61,...,05) € [y x...x I5 = 0.95))7



