
Solutions to exam-0-4

Problem 1 (20 points)
You are given the following five unadjusted p-values for testing H1, . . . ,H5

0.99734, 0.60008, 0.13896, 0.00773, 0.00097,

where 0.99734 is the p-value for H1, 0.60008 is the p-value for H2 and so on. Calculate Bonferroni,
Holm, and Benjamini and Hochberg adjusted p-values. For each of the three methods decide which
hypotheses we reject if we use α = 0.05.

Solution: Here, we obtain Bonferroni adjusted p-values by multiplying the above p-values by 5.
Results larger than 1 are set equal to 1. We find

1.00; 1.00; 0.6948; 0.03865; 0.00485.

Hence we reject H4 and H5, because their Bonferroni adjusted p-values are both less than 0.05.
To find Holm adjusted p-values we first order them. Here the smallest is multiplied by 5 the second
smallest by 4, the third smallest by 3 and so on. Then the adjusted p-values increasingly ordered
are (again using the convention that p-values bigger than 1 are set equal to 1)

0.00485; 0.03092; 0.41688; 1.00; 1.00.

Hence, we reject H4 and H5 because they correspond to the second smallest and smallest ordered
p-values.
For Benjamini and Hochberg we multiply the smallest p-value by 5, the second smallest by 5/2,
the third smallest by 5/3 and so on. Then we obtain

0.00485; 0.019325; 0.231600; 0.750100; 0.997340.

We need to find the largest of these which is less than 0.05. Here this is p(2) and we reject all
hypotheses with p-value less or equal than p(2). Here this means we reject H4 and H5.

Problem 2 (10 + 10 points)
Assume that the cumulative distribution function of the random variable X is given by

Fλ(x) = 1− exp

(
−
(x
λ

)2)
, x > 0, and zero otherwise,

where λ > 0. For testing
H : λ2 ≤ 2, A : λ2 > 2,

we use, based on a sample X of size 1, the test statistic T (X) = X2 and we reject H at level α if
X exceeds the critical value c(α).

(i) Find the critical value c(α) if we test at α = 0.05;

(ii) Calculate the power of the test at λ = 4.
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Solution: (i) We need to find a real number c(0.05) such that

Pλ2=2(X
2 ≤ c(0.05)) = 0.95.

This is equivalent to (note that λ2 ≤ 2 is the same as λ ≤
√

2)

Pλ2=2(X ≤
√
c(0.05)) = 1− exp

−(√c(0.05)√
2

)2
 = 1− exp

(
−c(0.05)

2

)
!

= 0.95.

Here
!

= means ’must be equal to’. Solving for c(0.05) we find

c(0.05) = −2 log(0.05) = 5.991465.

(ii) We need to calculate

Pλ=4(X
2 > 5.991465) = 1− Pλ=4(X

2 ≤ 5.991465) = 1− Pλ=4(X ≤
√

5.991465),

which equals

1−

1− exp

−(√5.991465

4

)2
 = 0.687656.

Remarks: The distribution is not an exponential distribution nor a gamma distribution. It is a
Weibull distribution with shape parameter being equal to 2.
There is no need to note that ’λ2 ≤ 2 is the same as λ ≤

√
2’ because you can directly work with

λ2 as this term appears in the cdf.

Problem 3 (10 points)
For 0 < p < 1 consider the following probability distribution

P(Y = y) =
(1− p)y−1p

1− (1− p)10
, for y = 1, . . . , 10,

which takes only the values 1, 2, . . . , 10. In other words the probability mass function gpY of this
random variable is

gpY (y) =
(1− p)y−1p

1− (1− p)10
, for y = 1, . . . , 10.

In class (Lecture 6) we discussed a particular form for probability mass functions given by

fYθ (y) = exp

(
yθ − b(θ)

ψ
− c(ψ, y)

)
, y ∈ D,

where θ ∈ Θ and ψ are real-valued parameters, D is the support of the distribution of Y , and b
and c are real-valued functions. Is it possible to write gpY in this form?

Solution: We rewrite gpY as

exp

(
log

(
(1− p)y−1p

1− (1− p)10

))
= exp

(
(y − 1) log(1− p) + log(p)− log(1− (1− p)10)

)
= exp

(
y log(1− p)− log(1− p) + log(p)− log(1− (1− p)10)

)
.
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Comparing this with fYθ we see that we must have

θ = log(1− p), ψ ≡ 1, c(ψ, y) ≡ 0

and using that p = 1− exp(θ)

b(θ) = θ − log(1− exp(θ)) + log(1− exp(θ)10).

Remarks: Note that ψ and c(ψ; y) are not allowed to depend on θ or which is the same on log(1−p).
Note also that b must be given as a function of θ.

Problem 4 (7.5+7.5 points)
In class we related the expectation of a random variable Y to a linear function

∑d
j=1 βj xj using a

link function h. Assume that the distribution of Y is given by

P(Y = k) = (1− p)k−1p, for k = 1, 2, . . . ,

where we have for the parameter p that 0 < p ≤ 1. This implies that the expectation of E[Y ] equals

E[Y ] =
1

p
.

For each of the following alternative choices of the link function h, argue if it is meaningful to use
them to relate E[Y ] and

∑d
j=1 βj xj by E[Y ] = h(

∑d
j=1 βj xj). Explain your answer.

(i) h1(x) = |x|+ 1, x ∈ R;

(ii) h2(x) =
∫ |x|
0 y2 dy, x ∈ R.

Solution: Note first that p is an element of (0, 1] which implies that E[Y ] is an element of [1,∞).
Therefore any meaningful link function must also map to [1,∞) (or to (1,∞)).
(i) is meaningful as its range is [1,∞).
(ii) is not meaningful because the integral equals (1/3)|x|3 for any x ∈ R. Hence, the range of the
link function is [0,∞).
Remark: This is not a binomial distribution. It is a geometric distribution.

Problem 5 (7.5+7.5 points)
Assume our data come from the linear model

Yi =

60∑
j=1

βj Xij + εi, i = 1, . . . , 10,

with εi, 1 ≤ i ≤ 10, independent and normally distributed with expectation zero and variance σ2.
Unfortunately the observations y1, . . . , y10, and x11, . . . , x10 60 were lost. What is known is that the
Xij were independent and each normally distributed with expectation 2 and variance 10. A friend
of you tells you that he was additionally given the following two vectors

(i) β̄ = (β̄1, . . . , β̄60) with β̄j = 1 + j for j = 1, . . . , 12 and β̄j = 0 otherwise;
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(ii) β̆ = (β̆1, . . . , β̆60) with β̆j = 1 + j for j = 1, . . . , 5, β̆59 = 2.5 and β̆j = 0 otherwise.

Given this information only decide for both β̄ and β̆ whether they could potentially be the solution
to the following minimization problem

minimize w.r.t. β :
1

10

10∑
i=1

yi − 60∑
j=1

βj xij

2

+ 3

60∑
j=1

|βj |,

where y1, . . . , y10 and x11, . . . , x10 60 are the unknown observations.
Explain your answers briefly.

Solution: From class we know that in case of continuous regressors the LASSO estimator is unique
and has at most min{n, d} non-zero entries. This result can be applied here because the regressors
are independent and each has a continuous distribution which implies that their joint distribution
is also a continuous distribution. Then the vector in (i) can be ruled out as it has more than 10
non-zero entries. The estimator in (ii) cannot be ruled out and is therefore a potential solution.

Problem 6 (10 points)
We discussed in class that there can be multiple solutions to the (LASSO) minimization problem

minimize w.r.t. β :
1

n

n∑
i=1

yi − d∑
j=1

βjxij

2

+ λ

d∑
j=1

|βj |.

Let β̂1 and β̂2 be two different solutions for this minimization problem. Prove or disprove that
Xβ̂1 = Xβ̂2 where, as usual, X is the design matrix.
Hints: Xβ̂1 and Xβ̂2 are in Rn, the mapping z → ||y − z||22 is strictly ...

Solution: We rewrite and use convexity of x→ |x| to find for 0 ≤ α ≤ 1

1

n

n∑
i=1

yi −
 d∑
j=1

αβ̂1jxij + (1− α)

d∑
j=1

β̂2jxij

2

+ λ

d∑
j=1

|αβ̂1j + (1− α)β̂2j |

≤ 1

n
||y − αXβ̂1 − (1− α)Xβ̂2||22 + λ

d∑
j=1

α|β̂1j |+ λ

d∑
j=1

(1− α)|β̂2j |,

where as usual || · ||2 denotes the Euclidean scalar product. The mapping z → ||y − z||22 where
z ∈ Rn is strictly convex; cf. hints. Hence,

1

n
||y − αXβ̂1 − (1− α)Xβ̂2||22 + λ

d∑
j=1

α|β̂1j |+ λ

d∑
j=1

(1− α)|β̂2j |

<
1

n
α||y −Xβ̂1||22 + (1− α)||y −Xβ̂2||22 + λ

d∑
j=1

α|β̂1j |+ λ
d∑
j=1

(1− α)|β̂2j |

= α

 1

n
||y −Xβ̂1||22 + λ

d∑
j=1

|β̂1j |

+ (1− α)

||y −Xβ̂2||22 + λ

d∑
j=1

|β̂2j |

 ,
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where < is due to the strict convexity. The last line equals the minimum of the function

β :→ 1

n

n∑
i=1

yi − d∑
j=1

βjxij

2

+ λ

d∑
j=1

|βj |, (1)

because β̂1 and β̂2 both minimize this function (and α and (1 − α) add up to 1). This gives
a contradiction because according to the above the function value at αβ̂1 + (1 − α)β̂2 would be
smaller.
Remark: Note the difference to what we discussed in class. There we noticed that the function in
Equation (1) is convex but not strictly convex if d > n. Yet, here we argue about Xβ̂1 and Xβ̂2

which are in Rn and as said in the hint z → ||y − z||22 is strictly convex for z ∈ Rn.

Problem 7 (10 points)
For k = 1, . . . , 5 let Ik be a confidence interval for θk, k = 1, . . . , 5, with coverage probability 1−α.
Assuming that the Ik are independent how do we need to choose α such that I1 × . . . × I5 is a
simultaneous confidence interval for (θ1, . . . , θ5) at level 95% (, i.e. P((θ1, . . . , θ5) ∈ I1 × . . .× I5 =
0.95))?

Solution: We need to find α such that

(1− α)5 = 0.95.

This is equivalent to α = 1− 0.95
1
5 = 0.01020622.
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