Exam-2019-20

Problem 1

Let $\mathbf{X} = (X_1, \dots, X_d)$ be multivariate normally distributed with unknown expectation vector $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)$ and known covariance matrix Σ . The d hypotheses are

$$H_1: \mu_1 \leq 0, \dots, H_d: \mu_d \leq 0.$$

Based on a sample $(X_{11}, \ldots, X_{1d}), \ldots, (X_{n1}, \ldots, X_{nd})$ of size n from **X** we reject hypothesis i, $1 \le i \le d$, at level α if

$$\sum_{\ell=1}^{n} X_{\ell i} > \sqrt{n} \,\sigma_i q_{1-\alpha},$$

where σ_i is the standard deviation of X_i and $q_{1-\alpha}$ is the $(1-\alpha)$ -quantile of the standard normal.

- (i) For d=15 which multiple testing procedure could you use to test the d hypotheses?
- (ii) For d = 500 which multiple testing procedure would you use to test the d hypotheses?

Please motivate your answers in (i) and (ii) briefly.

Problem 2

Assume that X is exponentially distributed with parameter λ , i.e. the cumulative distribution function of X is given by

$$F_{\lambda}(x) = 1 - \exp(-\lambda x), x > 0$$
, and zero otherwise.

For testing

$$H: \lambda \leq 1, \quad A: \lambda > 1,$$

we use a sample X of size 1. Our test statistic is then simply T(X) = X and our p-value is simply $\hat{p}(X) = 1 - \exp(-X)$.

(i) Show that $\hat{p}(X)$ is uniformly distributed on (0,1) if the cumulative distribution function of X is

$$F_1(x) = 1 - \exp(-x), x > 0$$
, and zero otherwise.

(ii) Find the cumulative distribution function of $\hat{p}(X)$ if the cumulative distribution function of X is F_2 .

Problem 3

Assume that Y_i , $1 \le i \le n$, is Poisson distributed given the explanatory variables x_{i1} , x_{i2} and x_{i3} , $1 \le i \le n$, with parameter $\lambda_i = \exp(\beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3})$, $1 \le i \le n$. For a sample y_1, \ldots, y_n and explanatory variables $((x_{11}, x_{12}, x_{13}), (x_{21}, x_{22}, x_{23}), \ldots, (x_{n1}, x_{n2}, x_{n3}))$ give the log-likelihood function and find the first order conditions for β_1 , β_2 , and β_3 .

Problem 4

In Problem 3 we related λ_i , i.e. the expectation of Y_i , to $\beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3}$ using the function

 $h: \mathbb{R} \to \mathbb{R}_+$ defined by

$$h(x) := \exp(x).$$

For each of the following alternative choices, argue if it is meaningful to use them instead of the above h. Explain your answer.

- (i) $h_1(x) = x^3, x \in \mathbb{R};$
- (ii) $h_2(x) = \frac{x^2}{1+|x|}, x \in \mathbb{R}.$

Problem 5

Assume our data come from the linear model

$$Y_i = \sum_{j=1}^{d} \beta_j X_{ij} + \epsilon_i, i = 1, \dots, n,$$

with ϵ_i , $1 \leq i \leq n$, independent and normally distributed with expectation zero and variance σ^2 . Consider the following choices for d as a function of the sample size

- (i) $d = n^n$;
- (ii) $d = n^{15} \log(n)$;
- (iii) $d = \sqrt{n} \exp(n^{0.8})$.

For which of these choices do we have consistency of the LASSO estimator as $n \to \infty$ (you can assume that the design matrix fulfills the restricted eigenvalue condition and that β has only k non-zero entries for all d and n)? Please motivate your answers in (i), (ii) and (iii) briefly.

Problem 6

Consider the following set-up:

- X_i , $1 \le i \le 50$, is binomially distributed with success probability $p_i = p$, $1 \le i \le 50$;
- The hypotheses H_i , $1 \le i \le 50$, are $H_i : p_i = 0.5$;
- From each X_i we have a sample $(X_{i1}, \ldots, X_{i10})$ of size 10, and reject H_i if

$$\left| \frac{\sqrt{10}}{0.5} \left(\hat{p}_i - 0.5 \right) \right| > 1.645,$$

where $\hat{p}_i = \frac{1}{10} \sum_{j=1}^{10} X_{ij}$.

• If H_i is rejected we construct the following confidence interval for p_i

$$CI_i = \left[\hat{p}_i - 1.645\sqrt{\frac{\hat{p}_i(1-\hat{p}_i)}{10}}; \hat{p}_i + 1.645\sqrt{\frac{\hat{p}_i(1-\hat{p}_i)}{10}}\right].$$

Assume p=0.6, put $S=\{i\in\{1,\ldots,50\}\,|\,H_i\text{ was rejected }\}$ and let $p_S=(p_{i_1},\ldots,p_{i_{|S|}}),\ i_1<\ldots< i_{|S|},\ i_j\in S,$ be the vector of selected parameters (selected here means associated with the

hypotheses rejected). Write pseudo code (or code) that could be used to calculate the probability that p_S is contained in $CI_{i_1} \times \ldots \times CI_{i_{|S|}}$.