
Exam-2019-20 with solutions

Problem 1
Let X = (X1, . . . , Xd) be multivariate normally distributed with unknown expectation vector µ =
(µ1, . . . , µd) and known covariance matrix Σ. The d hypotheses are

H1 : µ1 ≤ 0, . . . ,Hd : µd ≤ 0.

Based on a sample (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) of size n from X we reject hypothesis i,
1 ≤ i ≤ d, at level α if

n∑
`=1

X`i >
√
nσiq1−α,

where σi is the standard deviation of Xi and q1−α is the (1− α)-quantile of the standard normal.

(i) For d = 15 which multiple testing procedure could you use to test the d hypotheses?

(ii) For d = 500 which multiple testing procedure would you use to test the d hypotheses?

Please motivate your answers in (i) and (ii) briefly.

Solution: (i) Because d = 15 is relatively small we could use the traditional procedures of Bonferroni
and Holm because the assumption underlying these procedures is fulfilled in the setting considered
here; see Exercise 7. Preference would be given to Holm’s procedure as it controls the same criterion
but has a higher power.
We could also use a k-FWER procedure with k ≥ 2 as the underlying assumption is the same.
Although k-FWER procedures with k bigger than 1 were designed for large d, they can be applied
for d small as well. The only difference is that they control a different criterion than the traditional
procedures, i.e. Bonferroni and Holm.
Moreover, we could use Benjamini and Yekutieli as it works whatever the unknown dependence
structure is. Notice that Benjamini and Hochberg cannot be used because it requires independence
or the PRDS property which may hold here or not but we cannot decide based on the information
given.

(ii) As d = 500 is pretty large we should not use Bonferroni or Holm even if the assumption is
fulfilled because their power is so small for d = 500 that we would not be able to detect deviations
from the null. We could use either Benjamini and Yekutieli or k-FWER with d bigger than 1. But
not Benjamini and Hochberg for the reasons outlined above.

Problem 2
Assume that X is exponentially distributed with parameter λ, i.e. the cumulative distribution
function of X is given by

Fλ(x) = 1− exp(−λx), x > 0, and zero otherwise.

For testing
H : λ ≤ 1, A : λ > 1,

we use a sample X of size 1. Our test statistic is then simply T (X) = X and our p-value is simply
p̂(X) = 1− exp(−X).
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(i) Show that p̂(X) is uniformly distributed on (0, 1) if the cumulative distribution function of
X is

F1(x) = 1− exp(−x), x > 0, and zero otherwise.

(ii) Find the cumulative distribution function of p̂(X) if the cumulative distribution function of
X is F2.

Solution: (i) Note first that p̂(X) = 1− exp(−X) takes only values from the interval (0,1) because
X takes values in (0,∞). We have for t ∈ (0, 1)

P(1− exp(−X) ≤ t) = P(X ≤ − log(1− t)) = 1− exp(−(− log(1− t))) = t.

(ii) We have almost as before

P(1− exp(−X) ≤ t) = P(X ≤ − log(1− t)) = 1− exp(−2(− log(1− t))) = 1− (1− t)2.

Problem 3
Assume that Yi, 1 ≤ i ≤ n, is Poisson distributed given the explanatory variables xi1, xi2 and xi3,
1 ≤ i ≤ n, with parameter λi = exp(β1 xi1 + β2 xi2 + β3xi3), 1 ≤ i ≤ n. For a sample y1, . . . , yn
and explanatory variables ((x11, x12, x13), (x21, x22, x23), . . . , (xn1, xn2, xn3)) give the log-likelihood
function and find the first order conditions for β1, β2, and β3.

Solution: The general case was discussed in lecture 6. Here we have d = 3.

Problem 4
In Problem 3 we related λi, i.e. the expectation of Yi, to β1 xi1 + β2 xi2 + β3xi3 using the function
h : R→ R+ defined by

h(x) := exp(x).

For each of the following alternative choices, argue if it is meaningful to use them instead of the
above h. Explain your answer.

(i) h1(x) = x3, x ∈ R;

(ii) h2(x) = x2

1+|x| , x ∈ R.

Solution: (i) it not a valid choice as the link function can take negative values in contrast to the
parameter of a Poisson distribution.
(ii) h2 maps to [0,∞). Arguing that it is not a good choice because it can be equal to zero whereas
λ > 0 would have been ok. Arguing that it is a suitable choice would have been ok too. In class
we consider the link function h(x) = x2 which has the ’same problem’. Yet the idea is if we have
random design with continuous covariates and non-degenerate distribution (i.e. here we have a
density) the probability that β1 xi1 + β2 xi2 + β3xi3 equals zero is zero.

Problem 5
Assume our data come from the linear model

Yi =
d∑
j=1

βj Xij + εi, i = 1, . . . , n,
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with εi, 1 ≤ i ≤ n, independent and normally distributed with expectation zero and variance σ2.
Consider the following choices for d as a function of the sample size

(i) d = nn;

(ii) d = n15 log(n);

(iii) d =
√
n exp

(
n0.8

)
.

For which of these choices do we have consistency of the LASSO estimator as n → ∞ (you can
assume that the design matrix fulfills the restricted eigenvalue condition and that β has only k
non-zero entries for all d and n)?
Please motivate your answers in (i), (ii) and (iii) briefly.

Solution: In all three cases we need to check if√
k log(d)

n
→ 0

(
or

k log(d)

n
→ 0

)
as n→∞, and log(d)→∞ as n→∞;

(see Theorem (upper bound on error of LASSO probabilistic version)) and notice that there σ and
γ are only constants and we can choose τ >

√
8.

(i) Since log(d) = log(nn) = n log(n) and k log(n) → ∞ as n → ∞ we do not have consistency
according to the Theorem.
(ii) As log(d) = log(n15 log(n)) = 15 log(n) + log(log(n)) and log(n)/n → 0 as n → ∞ (which
implies log(log(n))/n → 0 as n → ∞) the first condition is met. For the second condition it is
enough to note that d > 15 log(n)→∞ as n→∞.
(iii) As log(d) = 0.5 log(n) + n0.8 and n0.8/n = n−0.2 → 0 as well as log(n)/n → 0 as n → ∞ the
first condition is met. Clearly log(d) > n0.8 →∞ as n→∞ such that the second condition is met
too.

Problem 6
Consider the following set-up:

• Xi, 1 ≤ i ≤ 50, is binomially distributed with success probability pi = p, 1 ≤ i ≤ 50;

• The hypotheses Hi, 1 ≤ i ≤ 50, are Hi : pi = 0.5;

• From each Xi we have a sample (Xi1, . . . , Xi10) of size 10, and reject Hi if∣∣∣√10

0.5
(p̂i − 0.5)

∣∣∣ > 1.645,

where p̂i = 1
10

∑10
j=1Xij .

• If Hi is rejected we construct the following confidence interval for pi

CIi =

[
p̂i − 1.645

√
p̂i(1− p̂i)

10
; p̂i + 1.645

√
p̂i(1− p̂i)

10

]
.

Assume p = 0.6, put S = {i ∈ {1, . . . , 50} |Hi was rejected } and let pS = (pi1 , . . . , pi|S|), i1 <
. . . < i|S|, ij ∈ S, be the vector of selected parameters (selected here means associated with the
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hypotheses rejected). Write pseudo code (or code) that could be used to calculate the probability
that pS is contained in CIi1 × . . .× CIi|S| .

Solution:
sum=0
for (i in 1:M){
p=rep(0,50)
sumcovered=0
ind=c()
for (j in 1:50){
p[j]=(1/10)*rbinom(1,10,0.6)
if (abs((p[j]-0.5)*100.5/0.5)>1.645){
ind=cbind(ind,j)
}
}
for (k in ind){ if (0.6>=(p[k]-(1/100.5)*1.645*(p[k]*(1-p[k]))0.5) & 0.6<= (p[k]+(1/100.5)*1.645*(p[k]*(1-
p[k]))0.5)){
sumcovered=sumcovered+1
}
}
if (sumcovered==length(ind)){
sum=sum+1
}
print(sum/M)
}

Comments:

1. line 1: Initializing sum which will count how often pS is contained in CIi1 × . . .× CIi|S|

2. line 2: M number of repetitions;

3. line 3: initializing p̂;

4. line 5: vector that will be used to store indices of selected parameters;

5. line 7: generating the p̂’s;

6. line 8 and 9 checking whether we reject and if we reject we add the associated index to ind;

7. line 12, 13, and 14 checking whether the true parameter is covered in case of rejection and if
it is we increase sumcovered by 1;

8. line 17, 18 checking if all selected parameters were covered and if this is true we increase sum
by 1;

9. line 20 diving all coverages by number of repetitions.
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