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SAMPLE EXAM

Problem 1 (20 points).

State for each of the claims below whether it is true or false. NOTE: You do not need
to justify or prove your answers here.

(a) Let I = (G = (V,A),(`a)a∈A,(si, ti)i∈[k],(ri)i∈[k]) be an instance of the selfish rout-
ing game with standard latency functions. A feasible flow f for I is a Wardrop
flow if

∀i ∈ [k], ∀P,Q ∈ Pi, fP > 0 : `P( f )≥ `Q( f ).

(b) Let f be a Nash flow for a selfish routing instance I and define for every commod-
ity i ∈ [k], ci( f ) = minP∈Pi `P( f ). Then ci( f ) = c j( f ) for all i, j ∈ [k].

(c) There is an instance I of the selfish routing game with linear latency functions,
i.e., for all a ∈ A, `a(x) = qax with qa > 0, whose price of anarchy is 4

3 .

(d) Given an instance of the connection game, the social cost of every pure Nash
equilibrium is at least Hn times the optimal social cost, where n is the number of
players.

(e) A finite strategic game Γ has the finite improvement property if the transition
graph G(Γ) contains no directed cycles.

(f) The problem of computing a pure Nash equilibrium for symmetric network con-
gestion games is in P.

(g) Let Π1 ∈ PLS and let Π2 be PLS-complete. If Π2 is PLS-reducible to Π1 then Π1
is PLS-complete.

(h) The price of anarchy of second-price auctions is bounded.

(i) Given an arbitrary matching market (B,S,(vik)), there always exist market-clearing
prices.

(j) For generalized second-price auctions, bidding truthfully is a dominant strategy
for every player.
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Problem 1 (15 points). Let I = (G = (V,A),(`a)a∈A,(si, ti)i∈[k],(ri)i∈[k]) be a selfish
routing instance.

(a) Fix some integer d ≥ 0 and assume that all latency functions are monomials of
degree d, i.e., for every arc a ∈ A, `a(x) = qaxd for some qa ≥ 0. Derive a tight
bound on the price of anarchy for these games.

(b) Suppose all latency functions are affine, i.e., for every arc a ∈ A, `a(x) = pax+qa
for some pa,qa ≥ 0. We say that a flow f is α-fair with α ≥ 1 if for every
commodity i the latency of every flow-carrying si, ti-path is at most α times larger
than the minimum latency, i.e.,

∀i ∈ [k], ∀P ∈ Pi, fP > 0 : `P( f )≤ α · min
Q∈Pi

`Q( f )

Prove that every optimal flow is 2-fair and provide an example that shows that this
is tight.

Problem 2 (5+5+10+10 points).

Consider the following scheduling game: We are given a set of jobs N = [n] that need
to be processed on a set of machines M = [m]. Every job j ∈ N has a processing time
p j > 0, which defines the amount of time that j needs to be processed. A schedule
σ = (σ1, . . . ,σn) ∈ Mn assigns each job j ∈ N to a machine σ j ∈ M on which it is
processed. The load Li(σ) of a machine i ∈M with respect to a given schedule σ is
defined as the total processing time of all jobs that are assigned to i, i.e.,

Li(σ) = ∑
j∈N:σ j=i

p j.

Define the completion time c j(σ) of a job j ∈ N with respect to a given schedule σ

as the load of the machine to which job j is assigned, i.e., c j(σ) = Li(σ) with i = σ j.
Suppose each job j ∈N corresponds to a selfish player who chooses a machine σ j ∈M
such that her own completion time is minimized. Define the social cost Cmax(σ) of
a schedule σ as the maximum load of a machine, i.e., Cmax(σ) = maxi∈M Li(σ). A
schedule σ∗ that minimizes Cmax is said to be optimal.

(a) Consider a scheduling game with m= 2 machines and n= 4 jobs. Let p1 = p2 = 2
and p3 = p4 = 1. Determine the price of anarchy for this instance.

(b) Generalize the example in (a) to show that for every m≥ 2 the price of anarchy of
scheduling games is at least 2m/(m+1).

(c) Show that the price of anarchy for scheduling games is at most 2.

(d) Prove that pure Nash equilibria always exist in scheduling games. (Hint: Define
Φ(σ) = (L1(σ), . . . ,Lm(σ)) ∈ Rm as the ordered vector of machine loads such
that L1(σ)≥ L2(σ)≥ ·· · ≥ Lm(σ). Show that Φ is a generalized ordinal potential
function with respect to the lexicographic ordering.)
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Problem 3 (5+10 points).

Consider a single-item auction with player set N = [n]. Each player i∈N has a private
valuation vi and specifies a bid bi.

(a) In a first-price auction the item is given to a player whose bid is largest (ties are
broken arbitrarily) at a price equal to the bid of this player. Show that the first-
price auction is not strategyproof.

(b) Show that in a Vickrey auction a player i might be strictly worse of by bidding
bi 6= vi than by bidding truthfully. That is, show that for every player i ∈ N and
for every bid bi 6= vi there is a bidding profile b−i of the other players such that
ui(b−i,bi)< ui(b−i,vi).

Problem 4 (10+5+5 points).

Consider the generalized second-price auction setting with n players and m = n slots.
Recall that the bids b = (bi)i∈N constitute a pure Nash equilibrium if no player can
increase her utility by unilaterally changing her bid.

(a) Show that the pure Nash equilibrium conditions can be expressed by n− 1 in-
equalities for each player that must be satisfied.

We say that the bids b = (bi)i∈N are envy-free if for every player i ∈ N assigned to slot
k (i.e., i = π(k)) and every other slot j 6= k

αk(vi−bπ(k+1))≥ α j(vi−bπ( j+1)).

(The interpretation of “envy-free” here is that if we consider the prices for the slots to
be fixed, then every player i is as happy getting her current slot at the current price as
she would be getting any other slot at that slot’s price.)

(b) Prove that if the bids b = (bi)i∈N are envy-free then they constitute a pure Nash
equilibrium.

(c) Give an example showing that there are bids b = (bi)i∈N which constitute a pure
Nash equilibrium but are not envy-free.
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