Exam Asymptotic Statistics

December 18, 2009

15.15-18.00

National Master's program Mastermath
Department of Mathematics, Faculty of Sciences, VU University Amsterdam
Delft Institute of Applied Mathematics, TU Delft

- 1. a) Consider a sequence of random variables (X_n) and some constant $c \in \mathbb{R}$. Show (directly from the definition of the appropriate modes of convergence) that $X_n \rightsquigarrow c \Rightarrow X_n \stackrel{\mathrm{P}}{\to} c$.
 - b) Consider a sequence of random variables (X_n) . Give a precise definition of uniform tightness. Show that $\mathrm{E} X_n^2 = O(1)$ implies uniform tightness of the sequence (X_n) .
 - c) Let X_n be the minimum of a random sample Y_1, \ldots, Y_n from the density $f(x) = x^2 + 2/3$ on [0,1]. Find a constant a and a sequence b_n such that $b_n(X_n a)$ converges in distribution to a nondegenerate limit. Determine the limit law.
 - d) We define the bias of the estimator $\hat{\theta}$ for estimating θ to be $E(\hat{\theta} \theta)$. Suppose that two different estimation procedures give two biased sequences of estimators T_n and S_n , with bias e_n and $-3e_n$, respectively, for some sequence $e_n \to 0$. The sequences of estimators are known to be asymptotically consistent. Find a linear combination of the sequences of estimators that give an unbiased sequence of estimators. Is it consistent?
- 2. Let Z be a three dimensional standard normal vector. Consider $X = (1, 1, 1)^T + LZ$, where

$$L = \left[\begin{array}{ccc} 1 & 0 & 0 \\ a & \sqrt{2 - a^2} & 0 \\ 0 & 0 & \sqrt{a} \end{array} \right].$$

Does there exist an a such that the random variables $X_1 + X_2 + X_3$ and X_2 are independent? If yes, give this a.

- 3. Let X_1, \ldots, X_n be a sample from the normal distribution with mean θ and variance θ .
 - a) Find a variance stabilizing transformation for the sample mean and construct a confidence interval for θ based on this.
 - b) Find the limit distribution of the sequence $\sqrt{n}(\cos(\bar{X}_n) \cos(\theta))$. For which values of θ is this distribution degenerate?
- 4. Let X_1, X_2, \ldots be independent and identically distributed random variables with probability density function

$$p_{\mu}(x) = \mu e^{-\mu x}$$
 for $x > 0$.

The distribution is exponential with unknown, but fixed, scale $\mu > 0$. Define, for $\theta > 0$, the function

$$\psi_{ heta}(x) = rac{1}{ heta} - x \quad ext{for } x > 0,$$

and consider the Z-estimator $\hat{\theta}_n$ defined as a zero of the function

$$\Psi_n(\theta) = \mathbb{P}_n \psi_{\theta} = \frac{1}{n} \sum_{i=1}^n \psi_{\theta}(X_i).$$

- a) Using properties of the function Ψ_n , show that $\hat{\theta}_n$ is well defined, *i.e.* Ψ_n has exactly one point where it takes the value zero.
- b) Show that $\Psi_n(\theta)$ converges in probability, for fixed $\theta > 0$.
- c) Prove that $\hat{\theta}_n \stackrel{P}{\to} \mu$.
- d) The random variables $\sqrt{n}(\hat{\theta}_n \mu)$ are asymptotically normally distributed. What parameters do you expect for this asymptotic normal distribution?
- e) Derive the maximum likelihood estimator for μ . How does it relate to $\hat{\theta}_n$? Based on this and d), give the Fisher information I_{μ} .
- 5. Suppose that X_1, \ldots, X_n is a random sample from the uniform distribution on $[0, \theta]$ for $\theta > 0$. Fix $t \in (0, \theta)$. Consider two estimators of $P(X_1 \le t)$: $\mathbb{F}_n(t)$ and $T_n(t) = t/(2\bar{X}_n)$.
 - a) What is the asymptotic variance of the estimator $\mathbb{F}_n(t)$ of $P(X_1 \leq t)$? In other words, find the variance of the asymptotic distribution of $\sqrt{n}(\mathbb{F}_n(t) P(X_1 \leq t))$.
 - b) What is the asymptotic variance of the estimator $T_n(t) = t/(2\bar{X}_n)$ of $P(X_1 \le t)$? In other words, find the variance of the asymptotic distribution of $\sqrt{n}(T_n(t) P(X_1 \le t))$.
 - c) Compare the variances of $\mathbb{F}_n(t)$ and $T_n(t)$. For which values of t does the first estimator have a smaller variance?

1a	1b	1c	1d	2	3a	3b	4a	4b	4c	4d	4e	5a	5b	5c
2	2	2	2	5	3	3	2	1	3	3	2	2	2	2

The final grade is (number of points + 4)/4Good luck with the exam!