Exam Applied Stochastic Modeling - Solutions

The solutions are always provisionary

19 December 2022, 8:30-11:15 hours

Exercise 1.

a. Let N;(t) be the number of visitors of class i, i = 1,2, during [0,¢] and let N(t) =
Ni(t) + Na(t). As customers arrive according to a Poisson process during [0, 20], it follows
that N1(20) and Ny (20) follow Poisson distributions with rates 5x20 = 100 and 10x20 = 200,
respectively. Since the sum of Poisson random variables is again Poisson, N(20) follows a
Poisson distribution with rate 100 + 200 = 300.

b. For the expected number of customers of type ¢ at time 7 € [0,20] (m;(7)) (with \; and
w; denoting the arrival and service rates, respectively), we have
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such that my(7) = 5(1 — e~ ") and ma(7) = 5(1 — e~ 27).

The number of class ¢ customers present at time 7 follows a Poisson distribution with

rate m;(7). Hence, the total number of customers present at time 3 also follows a Poisson
distribution with rate m1(3) +ma(3) = 5(1 —e™2) +5(1 — e7°).
c. See Figure 1 for a sketch of m;(7) for i = 1,2 and 7 € [0, 20]. Observe that ma(7) > m(7).
The offered load of both classes is the same (and equals 5), whereas uy > pp implying that
the number of customers of class 2 converges faster to its steady state (more specifically,
events for class 2 happen twice as fast).
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Figure 1: The evolution of m1(7) and ma(7) over time.

Exercise 2.
a. The first and second moment of the service time S are ES = px2/p+(1—p) x2/(1-p) =4
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The load is AES = 3/4 (independent of p). The expected waiting time is thus given by
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b. See Figure 2 for a sketch of the expected waiting time EW(g as a function of p € [0.5,1).
Observe that as p increases, the variability in the service times increases, whereas the ex-
pectation (and also the load) remains the same. Hence, the waiting time increases with
p € [0.5,1). For p — 1, the second moment of the service time explodes, and thereby also
the expected waiting time.
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Figure 2: The expected waiting time EW¢ as a function of p € [0.5,1).

c. For SJF, the expected waiting time for a customer of size = (with fg(¢) the density of the
service time) equals
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where ER = \ES?/2 = m, see also part a. For x = 0 and z = oo, we get
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with EWg(FCFS) corresponding to part a.

Exercise 3.

a. The transition diagram can be found in Figure 3. The balance equations are: 37(0) =
27(1) and 27 (1) = 27(2). This yields 7(2) = w(1) = 3/2 7(0). Using normalization, we find
7(0) from 7(0) [1 +3/2 + 3/2] = 1. Hence, 7(0) = 1/4 and 7(1) = w(2) = 3/s.



Figure 3: Transition diagram Exercise 3a.

b. For the distribution of the number of customers a joining customer sees upon arrival
(a(x)), we need ‘beyond PASTA’, i.e.,

m(z)A (x)
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where A'(0) = 3, A'(1) = 2, and A’ (2) = 0. Hence, 7(0)A"(0) = 7(1)A’(1) = 3/1. Combining
. 3/4

the above yields a(0) = a(1) = W =1/ and a(2) = 0.

Finally, the probability that a joining customer waits at least ¢ time units equals a(1)e™
1/ae™2t,
c. Make a sketch of the number of customers in the system over time. As regeneration epochs,
we take the moments that customers arrive to an empty system. A cycle then consists of a
busy period (BP) and a consecutive idle period (I). Due to the renewal reward theorem, we

obtain the long-run fraction of time the server is idle as

a(z) =
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Exercise 4.
a. The transition diagram can be found in Figure 4. The balance equations, for ni > 0, are

4+ p + po)m(ng, K) =4n(ng — LK)+ un(ng + L, K) + pym(ng + 1, K — 1).
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Figure 4: Transition diagram for Exercise 4a. Only outgoing transitions are shown.



b. Observe that, as K — oo, both stations behave as M/M/1 queues with arrival rate 4 (due
to Burke’s output theorem). Hence,
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Thus, the ratio of waiting times yields
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When p1 — 4, this ratio explodes, as the first station tends to become unstable, such that
the waiting time explodes (whereas the second station remains stable with a finite expected
waiting time).

Exercise 5.

a. The inventory process may be considered as a regenerative process, with the order mo-
ments with an empty inventory as regeneration epochs (a sketch of the inventory process is
convenient). The cycle length equals T = @/5. The holdings costs per cycle are 1 xQ x T x1/2.
The order costs per cycle are clearly 10+aQ+bQ? (you may directly substitute a = b = 3/10).
Hence, the renewal reward theorem provides the long-run average cost per time unit

10+ aQ + bQ?
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which provides the desired result for a = b = 3/10.
b. Taking the derivative of C'(Q) with respect to @ gives
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C/(Q) — —@ + 2.
Solving C’'(Q) = 0 yields the optimal order size @* = v/25 = 5; note that we have a global
minimum as C" (Q) > 0.
Observe that the derivative C’'(Q) remains the same for an arbitrary a, and thus Q* =5
remains optimal. Hence, the management proposal does not influence the order size.



