
Exam Applied Stochastic Modeling - Solutions
The solutions are always provisionary

19 December 2022, 8:30-11:15 hours

Exercise 1.
a. Let Ni(t) be the number of visitors of class i, i = 1, 2, during [0, t] and let N(t) =
N1(t) + N2(t). As customers arrive according to a Poisson process during [0, 20], it follows
thatN1(20) andN2(20) follow Poisson distributions with rates 5×20 = 100 and 10×20 = 200,
respectively. Since the sum of Poisson random variables is again Poisson, N(20) follows a
Poisson distribution with rate 100 + 200 = 300.
b. For the expected number of customers of type i at time τ ∈ [0, 20] (mi(τ)) (with λi and
µi denoting the arrival and service rates, respectively), we have

mi(τ) =

∫ τ

0
λie
−µi(τ−t)dt =

∫ τ

0
λie
−µitdt =

λi
µi

(
1− e−µiτ

)
,

such that m1(τ) = 5(1− e−τ ) and m2(τ) = 5(1− e−2τ ).
The number of class i customers present at time τ follows a Poisson distribution with

rate mi(τ). Hence, the total number of customers present at time 3 also follows a Poisson
distribution with rate m1(3) +m2(3) = 5(1− e−3) + 5(1− e−6).
c. See Figure 1 for a sketch of mi(τ) for i = 1, 2 and τ ∈ [0, 20]. Observe that m2(τ) ≥ m1(τ).
The offered load of both classes is the same (and equals 5), whereas µ2 > µ1 implying that
the number of customers of class 2 converges faster to its steady state (more specifically,
events for class 2 happen twice as fast).
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Figure 1: The evolution of m1(τ) and m2(τ) over time.

Exercise 2.
a. The first and second moment of the service time S are ES = p× 2/p+(1−p)× 2/(1− p) = 4

1



and

ES2 = p
2

(p/2)2
+ (1− p) 2

((1− p)/2)2
=

8

p
+

8

1− p
=

8

p(1− p)
The load is λES = 3/4 (independent of p). The expected waiting time is thus given by

EWQ =
λES2

2(1− λES)
=

3/16× 8/(p(1− p))

2(1− 3/4)
=

3

p(1− p)
.

b. See Figure 2 for a sketch of the expected waiting time EWQ as a function of p ∈ [0.5, 1).
Observe that as p increases, the variability in the service times increases, whereas the ex-
pectation (and also the load) remains the same. Hence, the waiting time increases with
p ∈ [0.5, 1). For p → 1, the second moment of the service time explodes, and thereby also
the expected waiting time.
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Figure 2: The expected waiting time EWQ as a function of p ∈ [0.5, 1).

c. For SJF, the expected waiting time for a customer of size x (with fS(t) the density of the
service time) equals

E[WQ(SJF ) | S = x] =
ER(

1− λ
∫ x
0 tfS(t)dt

)2 ,
where ER = λES2/2 = 3

4p(1−p) , see also part a. For x = 0 and x =∞, we get

E[WQ(SJF ) | S = 0] = ER =
3

4p(1− p)
< EWQ(FCFS)

E[WQ(SJF ) | S =∞] =
ER

(1− λES)2
=

12

p(1− p)
> EWQ(FCFS),

with EWQ(FCFS) corresponding to part a.

Exercise 3.
a. The transition diagram can be found in Figure 3. The balance equations are: 3π(0) =
2π(1) and 2π(1) = 2π(2). This yields π(2) = π(1) = 3/2 π(0). Using normalization, we find
π(0) from π(0) [1 + 3/2 + 3/2] = 1. Hence, π(0) = 1/4 and π(1) = π(2) = 3/8.
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Figure 3: Transition diagram Exercise 3a.

b. For the distribution of the number of customers a joining customer sees upon arrival
(α(x)), we need ‘beyond PASTA’, i.e.,

α(x) =
π(x)Λ

′
(x)∑2

y=0 π(y)Λ′(y)
,

where Λ
′
(0) = 3, Λ

′
(1) = 2, and Λ

′
(2) = 0. Hence, π(0)Λ

′
(0) = π(1)Λ

′
(1) = 3/4. Combining

the above yields α(0) = α(1) = 3/4
3/4+3/4 = 1/2 and α(2) = 0.

Finally, the probability that a joining customer waits at least t time units equals α(1)e−2t =
1/2e−2t.
c. Make a sketch of the number of customers in the system over time. As regeneration epochs,
we take the moments that customers arrive to an empty system. A cycle then consists of a
busy period (BP ) and a consecutive idle period (I). Due to the renewal reward theorem, we
obtain the long-run fraction of time the server is idle as

Fraction server idle =
EI

EBP + EI
=

1/3

1 + 1/3
=

1

4
.

Exercise 4.
a. The transition diagram can be found in Figure 4. The balance equations, for n1 > 0, are

(4 + µ1 + µ2)π(n1,K) = 4π(n1 − 1,K) + µ1π(n1 + 1,K) + µ1π(n1 + 1,K − 1).
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Figure 4: Transition diagram for Exercise 4a. Only outgoing transitions are shown.
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b. Observe that, as K →∞, both stations behave as M/M/1 queues with arrival rate 4 (due
to Burke’s output theorem). Hence,

EWQ(i) =
4/µi

µi(1− 4/µi)
=

4

µi(µi − 4)
.

Thus, the ratio of waiting times yields

EWQ(1)

EWQ(2)
=

4
µ1(µ1−4)

4
µ2(µ2−4)

=
µ2(µ2 − 4)

µ1(µ1 − 4)
.

When µ1 → 4, this ratio explodes, as the first station tends to become unstable, such that
the waiting time explodes (whereas the second station remains stable with a finite expected
waiting time).

Exercise 5.
a. The inventory process may be considered as a regenerative process, with the order mo-
ments with an empty inventory as regeneration epochs (a sketch of the inventory process is
convenient). The cycle length equals T = Q/5. The holdings costs per cycle are 1×Q×T×1/2.
The order costs per cycle are clearly 10+aQ+bQ2 (you may directly substitute a = b = 3/10).
Hence, the renewal reward theorem provides the long-run average cost per time unit

C(Q) =
10 + aQ+ bQ2

Q/5
+

1

2
Q =

50

Q
+ 5a+

(
1

2
+ 5b

)
Q,

which provides the desired result for a = b = 3/10.
b. Taking the derivative of C(Q) with respect to Q gives

C ′(Q) = − 50

Q2
+ 2.

Solving C ′(Q) = 0 yields the optimal order size Q∗ =
√

25 = 5; note that we have a global
minimum as C

′′
(Q) > 0.

Observe that the derivative C ′(Q) remains the same for an arbitrary a, and thus Q∗ = 5
remains optimal. Hence, the management proposal does not influence the order size.
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