Exam Applied Stochastic Modeling - Solutions

The solutions are always provisionary
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Exercise 1.

a. Let N(t) be the number of visitors during [0,¢]. Then EN(4) = f02 Ardt + f24 Aodt =
2(A1 + A2). Moreover, as visitors arrive according to a (time-dependent) Poisson process, it
follows that N(4) follows a Poisson distribution, with rate 2(\; + A2).

b. The number of visitors at time 7 consists of the arrivals during [(7 — 2)T, 7]. Hence, for
T € [0,2], we have

m(T) = / Ardt = A\ 7.
0
For 7 € (2,4], we have

2 -
m(T):/ 2)\1dt+/2 Aodt = A1 (4 —7) + Xo(T — 2).

Finally, for 7 € (4, 6], we obtain

m(T) = /42)\2dt: /\2(6—7').

c. Note that it is assumed that 2(A; + A2) = 600, hence, A\ + A2 = 300. Observe that
the two candidate instants at which m(7) attains a peak are the moments 2 and 4, i.e.,
max,¢p,6) M(7) = max{m(2), m(4)} = max{2A1,2A2}. This value is smallest if m(2) = m(4),
thus, for Ay = Ag. This implies that Ay = Ay = 150. See Figure 1 for the corresponding
sketch of m(7) for 7 € [0, 6].
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Figuur 1: The evolution of m(7) over time for A\; = A2 = 150.



Exercise 2.
a. Due to random splitting and thinning of a Poisson process, we have two identical M/M/1
queue with arrival rate A\/2. As p = 1, we have load p = A/2. The expected waiting time is

A2 A
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b. Again, due to thinning of a Poisson process, queue 1 has Poisson arrivals with rate
A(1 —e™t). The service times are truncated exponential (truncated at ¢), which thus follows
a general distribution, hence, queue 1 behaves as an M/G/1. Now,

t
E[S; type 1] = / re *dr = 1—(t+1)e?
0
t
E[S?; type 1] = / 2le Pdr = 2— (42t +2)e!
0
Thus, the expected waiting time at queue 1 is
AE[S?; type 1] AM2— (42t +2)et)

Mo = 50 EIS: type 1) 201 AT~ (14 e )

c. For t = 1, note that the load of queue 1 is A (1 — 26_1). Hence, after some rewriting, it
follows that queue 1 is stable if and only if A < _%;.

Exercise 3.

a. Make a sketch. Regeneration epochs are, for instance, moments when the machine is (as
good as) new; we use these regeneration epochs below . Then, the expected cycle length is
ET =t+2xt/b=1t(1+2/b). For the expected cost per cycle, we have

e Inspection cost: K
e Repair cost: 100 x t/b
e Downtime cost: 10 fot(t —z)fdz =12 5/b
Using the renewal reward theorem, the long-run average costs per time unit C(t) are

K +100t/b + 5t%/b 1 (Kb
- = — +5t+100) .
t(142/b) b+2 ot

C(t) t

b. Taking the derivative of C'(t) with respect to ¢ gives

oy _ Kb
C(t)_b+2<5 t2 )"

Solving C’(t) = 0 yields the optimal inspection time t* = y/Kb/5; note that we have a global
minimum as C” (t) > 0.

Exercise 4.
a. Let X (t) be the number of customers at time ¢. The corresponding transition diagram
can be found in Figure 2.

! Another option is to take the moments just after a repair, but this complicates the analysis.
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Figuur 2: Transition diagram Exercise 4a.

The balance equations (for sets) are: 3w(z) = pyn(x + 1), for x = 0,1,2, and 37 (z) =
pam(z + 1), for x = 3,4,.... Now, let u; = 3. Then, 7(3) = 7(2) = 7(1) = 7(0), and, for

r=34,.. . . .
(@) = Sz —1) = (3> (3) = (3) (0).

H2

b. The routing equations yield 73 = 3 and v = %71 = 2. Thus, for pu; = po > 3, we have

o = (32" ()
DG

For p; # pe, m(ni,n2) also has a product-form solution, as it is a generalized Jackson
network.
c. The transition diagram can be found in Figure 3.

Exercise 5.
a. The expected cost C'(S) as a function of the amount of capital raised S is

C(S)=rS+25rE(D - S)*,

where the first term is the cost for the initial capital raised and the second term corresponds
to the expected additional capital.

b. Marginal argument: initially raise the Sth unit costs r. Not initially raising the Sth unit
costs 2.5rP(D > S). Note that, for S = 200, the latter equals 2.5 x 0.5 = 1.25r > r. Hence,
raising the 200th unit costs less than not raising it, and S = 200 is too low.
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Figuur 3: State diagram for Exercise 4c. Only outgoing transitions are shown.



