
Exam Applied Stochastic Modeling - Solutions
The solutions are always provisionary

20 December 2021, 8:30-11:15 hours

Exercise 1.
a. Let N(t) be the number of visitors during [0, t]. Then EN(4) =

∫ 2
0 λ1dt +

∫ 4
2 λ2dt =

2(λ1 + λ2). Moreover, as visitors arrive according to a (time-dependent) Poisson process, it
follows that N(4) follows a Poisson distribution, with rate 2(λ1 + λ2).
b. The number of visitors at time τ consists of the arrivals during [(τ − 2)+, τ ]. Hence, for
τ ∈ [0, 2], we have

m(τ) =

∫ τ

0
λ1dt = λ1τ.

For τ ∈ (2, 4], we have

m(τ) =

∫ 2

τ−2
λ1dt+

∫ τ

2
λ2dt = λ1(4− τ) + λ2(τ − 2).

Finally, for τ ∈ (4, 6], we obtain

m(τ) =

∫ 4

τ−2
λ2dt = λ2(6− τ).

c. Note that it is assumed that 2(λ1 + λ2) = 600, hence, λ1 + λ2 = 300. Observe that
the two candidate instants at which m(τ) attains a peak are the moments 2 and 4, i.e.,
maxτ∈[0,6]m(τ) = max{m(2),m(4)} = max{2λ1, 2λ2}. This value is smallest if m(2) = m(4),
thus, for λ1 = λ2. This implies that λ1 = λ2 = 150. See Figure 1 for the corresponding
sketch of m(τ) for τ ∈ [0, 6].

Figuur 1: The evolution of m(τ) over time for λ1 = λ2 = 150.
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Exercise 2.
a. Due to random splitting and thinning of a Poisson process, we have two identical M/M/1
queue with arrival rate λ/2. As µ = 1, we have load ρ = λ/2. The expected waiting time is

EWQ =
λ/2

1− λ/2
=

λ

2− λ
.

b. Again, due to thinning of a Poisson process, queue 1 has Poisson arrivals with rate
λ(1− e−t). The service times are truncated exponential (truncated at t), which thus follows
a general distribution, hence, queue 1 behaves as an M/G/1. Now,

E[S; type 1] =

∫ t

0
xe−xdx = 1− (t+ 1)e−t

E[S2; type 1] =

∫ t

0
x2e−xdx = 2− (t2 + 2t+ 2)e−t

Thus, the expected waiting time at queue 1 is

WQ(1) =
λE[S2; type 1]

2(1− E[S; type 1])
=

λ
(
2− (t2 + 2t+ 2)e−t

)
2 (1− λ(1− (t+ 1)e−t))

c. For t = 1, note that the load of queue 1 is λ
(
1− 2e−1

)
. Hence, after some rewriting, it

follows that queue 1 is stable if and only if λ < e
e−2 .

Exercise 3.
a. Make a sketch. Regeneration epochs are, for instance, moments when the machine is (as
good as) new; we use these regeneration epochs below 1. Then, the expected cycle length is
ET = t+ 2× t/b = t(1 + 2/b). For the expected cost per cycle, we have

� Inspection cost: K

� Repair cost: 100× t/b

� Downtime cost: 10
∫ t
0 (t− x)1bdx = t2 5/b

Using the renewal reward theorem, the long-run average costs per time unit C(t) are

C(t) =
K + 100t/b+ 5t2/b

t(1 + 2/b)
=

1

b+ 2

(
Kb

t
+ 5t+ 100

)
.

b. Taking the derivative of C(t) with respect to t gives

C ′(t) =
1

b+ 2

(
5− Kb

t2

)
.

Solving C ′(t) = 0 yields the optimal inspection time t∗ =
√
Kb/5; note that we have a global

minimum as C
′′
(t) > 0.

Exercise 4.
a. Let X(t) be the number of customers at time t. The corresponding transition diagram
can be found in Figure 2.

1Another option is to take the moments just after a repair, but this complicates the analysis.
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Figuur 2: Transition diagram Exercise 4a.

The balance equations (for sets) are: 3π(x) = µ1π(x + 1), for x = 0, 1, 2, and 3π(x) =
µ2π(x + 1), for x = 3, 4, . . .. Now, let µ1 = 3. Then, π(3) = π(2) = π(1) = π(0), and, for
x = 3, 4, . . .,

π(x) =
3

µ2
π(x− 1) =

(
3

µ2

)x−3
π(3) =

(
3

µ2

)x−3
π(0).

Using normalization, we find π(0) from

π(0)

[
3 +

∞∑
x=3

(
3

µ2

)x−3]
= 1.

After some rewriting, we obtain

π(0) =
µ2 − 3

4µ2 − 9
.

b. The routing equations yield γ1 = 3 and γ2 = 2
3γ1 = 2. Thus, for µ1 = µ2 > 3, we have

π(n1, n2) =

(
1− 3

µ1

)(
3

µ1

)n1
(

1− 2

4

)(
2

4

)n2

=

(
1− 3

µ1

)(
3

µ1

)n1 1

2

(
1

2

)n2

.

For µ1 6= µ2, π(n1, n2) also has a product-form solution, as it is a generalized Jackson
network.
c. The transition diagram can be found in Figure 3.

Exercise 5.
a. The expected cost C(S) as a function of the amount of capital raised S is

C(S) = rS + 2.5rE(D − S)+,

where the first term is the cost for the initial capital raised and the second term corresponds
to the expected additional capital.
b. Marginal argument: initially raise the Sth unit costs r. Not initially raising the Sth unit
costs 2.5rP(D ≥ S). Note that, for S = 200, the latter equals 2.5r×0.5 = 1.25r > r. Hence,
raising the 200th unit costs less than not raising it, and S = 200 is too low.
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Figuur 3: State diagram for Exercise 4c. Only outgoing transitions are shown.
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