
Exam Applied Stochastic Modeling - Solutions
The solutions are always provisionary

14 December 2020, 8:30-11:15 hours

Exercise 1.
a. Let N(t) be the number of arriving Covid patients to the IC during [0, t]. Then EN(60) =∫ 60
0 et/15dt = 15(e4−1). Moreover, as patients arrive according to a (time-dependent) Poisson

process, it follows that N(60) follows a Poisson distribution, with rate 15(e4 − 1).
b. The number of Covid patients at the IC at time τ consists of the arrivals during [(τ −
15)+, τ ]. Hence, for τ ∈ [0, 15], we have

m(τ) =

∫ τ

0
et/15dt = 15(eτ/15 − 1).

For τ ∈ (15, 60], we have

m(τ) =

∫ τ

τ−15
et/15dt = 15eτ/15(1− e−1).

Finally, for τ ∈ (60, 75], we obtain

m(τ) =

∫ 60

τ−15
et/15dt+

∫ τ

60
Ce4dt = 15(e4 − eτ/15e−1) + Ce4(τ − 60).

c. See Figure 1 for a sketch of m(τ) for τ ∈ [0, 75]. Note that there is an exponential increase
in m(τ) during [0, 60] due to the exponential increase in the number of arrivals.

If C = 1, then the arrival rate remains constant at its peak. In that case, m(τ) keeps
increasing, and converges to its equilibrium at 15Ce4. Note that this happens gradually, due
to the delay in m(t) compared to λ(t) in view of the length of stay of 15 days.

If C = 0, there are no more arrivals. As the arrival rate is thus smaller than the arrival
rate at time 60− 45 = 15, m(τ) decreases instanteneously. Now, m(τ) converges to 0.

Figuur 1: The evolution of m(τ) over time for C = 1 (left) and C = 0 (right).
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Exercise 2.
a. Denote by S1 and S2 the time for taking orders and delivery of orders, respectively. Then,
the expected service time ES equals ES = ES1 + ES2 = 2/3 + 1/3 = 1.

For the waiting time, note that VarS = VarS1 + VarS2 = 1/(3/2)2 + 1/32 = 5/9. Hence,
ES2 = VarS + (ES)2 = 14/9 and for the residual service time R we obtain ER = 0.9 ES2/2 =
7/10. Now, the expected waiting time is

EWQ =
ER

1− ρ
=

7/10

1− 9/10
= 7.

b. The new arrival rate is 0.9 × 1.1 = 0.99. Thus, we now have ER = 77/100 and the new
waiting time equals

EWQ =
77/100

1− 99/100
= 77.

The expected waiting time thus increases by 1100%. This is due to the impact of the load,
leading to a (highly) non-linear increase. Specifically, just before Christmas the load of the
system is very high leading to excessive waiting.
c. Let the moments that a customer leaves be the regeneration epochs. A regeneration cycle
then consists of an interarrival time, S1 and S2, successively. Hence, the expected cycle
length is ET = 10/9+ 2/3+ 1/3 = 19/9. Impose a reward of 1 when the server is working. Using
the renewal reward theorem, we obtain

Fraction of time working =
E[working per cycle]

ET
=

1
19/9

=
9

19
.

For part a, the fraction of time the server is working is 9/10 (due to Little’s law); hence, the
fraction of time the server is working decreased with 9/10− 9/19 = 81/190. Due to PASTA, the
fraction of lost sales is 9/19.

Exercise 3.
a. The case of constant birth and death rates corresponds to the M/M/1 queue.
The case of a constant birth rate and death rate µx = min{x, 4}µ corresponds to the M/M/4
queue with service rate µ.
b. The transition diagram of this birth-and-death process can be found in Figure 2.
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Figuur 2: Transition diagram Exercise 3b.

The stationary distribution follows from the balance equations (for sets): λ/x π(x− 1) =
µπ(x), for x = 1, 2, . . .. Hence,

π(x) =
λ

µ

1

x
π(x− 1) =

(
λ

µ

)x 1

x!
π(0) x = 0, 1, . . . .

Using normalization, we obtain that

π(0) =

[ ∞∑
x=0

(
λ

µ

)x 1

x!

]−1
= e−

λ/µ.
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Thus, the stationary distribution follows a Poisson distribution with rate λ/µ.

Exercise 4.
a. The routing equations are γ1 = 1 + 3/4 γ2, γ2 = pγ1, and γ3 = (1 − p)γ1. This gives
γ1 = 1/(1− 3

4
p), γ2 = p/(1− 3

4
p), and γ3 = (1− p)/(1− 3

4
p). For stability, we need to find p such

that γ1 < 2, as queue 1 is the bottleneck. Hence, we need p < 2/3 for stability. This is a
Jackson network and the stationary distribution is thus of product form:

π(n1, n2, n3) =
(

1− γ1
2

)(γ1
2

)n1
(

1− γ2
2

)(γ2
2

)n2
(

1− γ3
2

)(γ3
2

)n3

=

(
1− 1

2− 3/2 p

)(
1

2− 3/2 p

)n1
(

1− p

2− 3/2 p

)(
p

2− 3/2 p

)n2

×
(

1− 1− p
2− 3/2 p

)(
1− p

2− 3/2 p

)n3

.

Exercise 5.
a. The first two terms correspond to the situations to whom the vaccine is sold: (i)
E[min{D,S}] is the expected sales to the government, making a profit of p − 0.2p = 0.8p,
and (ii) E(S −D)+ is the expected sales elsewhere, making a profit of 0.1p− 0.2p = −0.1p.
The final term is the fixed production costs (the variable production costs are incorporated
in the profits).

Note that Emin(D,S) = ED − E(D − S)+. To maximize P (S), we need to minimize
0.8pE(D−S)+ +0.1pE(S−D)+, which corresponds to a newsvendor. Hence, using standard
arguments,

S∗ = F−1D

(
0.8p

0.8p+ 0.1p

)
= F−1D

(
8

9

)
.

b. Conditioning of the demand from the government D, we have

E(D − S)+ =

∫ 50

S

1

50
(x− S)dx

=
1

50

(
502

2
− 50S +

S2

2

)
=

(50− S)2

100
.

The fraction of lost sales is thus

E(D − S)+

ED
=

(
50− S

50

)2

.
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