Exam Applied Stochastic Modeling - Solutions

The solutions are always provisionary

December 16, 2019, 8:45 - 11:30 hours

Exercise 1.

a. As the service times of both customer types follow the same (exponential) distribution,
it follows directly that ES; = ESy = ES = 1/, and ES? = 2/,2. Consequently, the residual
service time upon arrival reads
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Now, using the loads p; = 1/u, p2 = 2/u, and combining the above, we obtain
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When g | 3, then EWg(2) — oo, as the total load tends to 1 (i.e. p > 3 is required for
stability of the system, as p1 + pa = 3/u).
b. Let X(¢) denote the total number of customers at time ¢. The transition diagram of
the birth-and-death process X (t);>0 is given in Figure 1. The distribution of the number of
customers in the system follows from the balance equations (for sets): 37(0) = pn(1) and
1x7w(i—1) = pn(i), for i = 2,3,.... The first equation yields m(1) = 3/u w(0), whereas the

combination gives
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Using normalization (assuming p > 1 for stability), we obtain that
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Figure 1: State diagram Exercise 1b.

c. Observe that the model now corresponds to an M/M/1/1 queue (or Erlang loss model)
with arrival rate 3 and service rate p. Due to PASTA, the blocking probability equals



m(l) = ﬁ Note that 7(1) can either be obtained from solving the appropriate Markov

chain with state space {0, 1}, or by writing out B(1,3/u) of the Erlang loss model.

Exercise 2.

a. The transition diagram for the process X (t);>¢ (number of machines in repair) is given
in Figure 2; the transition diagram for the process Y (¢);>0 (number of working machines)
is given in Figure 3. Note that X (¢);>¢ corresponds to an Engset delay model and Y (¢):>0
to an Erlang loss model with arrival rate 1 and service rate A. The process Y (t):>0 seems
simpler when solving directly for the stationary distribution, but it may be argued otherwise
by refering to the Engset model.
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Figure 2: State diagram of X (t);>0 (number of machines in repair) for Exercise 2a.
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Figure 3: State diagram of Y (¢);>0 (number of working machines) for Exercise 2a.

b. Let NV;(t) denote the number of machines at facility ¢ at time ¢. Then (Y (¢), N1(t), Na(t))e>0
constitutes a closed Jackson network (we will refer to 1 as the node of working machines and
2 and 3 will refer to facility 1 and 2, respectively). The routing equations are: v, = v2 + 73,
v2 = 2/371, and 3 = 1/3y;. Thus, the solution has the following form:
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with C' the normalizing constant. For instance, choosing vy, = 1 yields 7; = 3/2 and 3 = 1/2.

Thus,
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c. We define the moments that the machine is just repaired (and thus as good as new) as the
regeneration epochs. We have that the expected cycle length is ET' = %—I—% X 1+% X % = %—i—%.
Using the renewal reward theorem, the long-run fraction of time the machine is working

equals
i E[working per cycle] 1/ 6
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Exercise 3.
a. The number of visitors waiting at the gate at time 2 equals the number of arrivals
during [0,2]. Hence, the expected number of visitors at the gate at time 2 then is f02 50tdt =

%ﬂﬁzo = 100. As visitors arrive according to a (time-dependent) Poisson process, it follows



directly that the number of visitors at the gate at time 2 follows a Poisson distribution with
rate 100 (use the first definition).

Similarly, the number of arriving visitors in [2,4] follows a Poisson distibution with rate
f24 100dt = 200 (use again the first definition).
b. The expected number of visitors in the royal palace m(7), for 7 € [2,4), consists of the
expected number of arriving visitors during [2, 7] and the expected number of visitors that
were waiting in front of the gate when the royal palace opened:

m(7) = / 100d¢ + 100 = 100(7 — 2) + 100 = 100(7 — 1).
2

For 7 € [4,6), the expected number of visitors in the royal palace equals the expected number
of arriving visitors in [7 — 2,4]. Thus,

4
m(r) = / 2 100dt = 100¢[;___, = 100(4 — (7 — 2)) = 100(6 — 7).

Please see the figure below for a sketch of m(7). At time epoch 4, there is a big drop
(expected value of 100) in the number of visitors at the royal palace. These are the visitors
that were waiting in front of the gate at time 2; they all finish their visit after exactly 2
hours, i.e., at time epoch 4.
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c. This example is similar to the airline revenue management example. For marginal ar-
guments, it needs to be decided whether each subsequent ticket should be hold back, or
should be sold for 10 euro’s. When the S-th ticket is hold back, the expected revenue is
15 x P(D > S), with D the demand during [2,4]. Thus, the optimal S is the largest S that
satisfies 15 x P(D > S) > 10. From part a, it follows that D follows a Poisson distribution
with rate 200, such that P(D > S) = 1 — Zg;é 6*200%. Some rewriting provides the
desired result, i.e., the optimal S is the largest .S that satisfies

S—1 k
200 15—-10 1
Z 6_200 < —

k! 15 3
k=0

Exercise 4.
a. A natural choice for the regeneration epochs are the moments of replenishment, i.e., the



moment that the inventory becomes 0 (a sketch may be convenient). Just as in the regular
EOQ, the cycle length T is @/x. Now, the holding cost per cycle are %QTh (just as in the
regular EOQ). The order cost per cycle are K — a@. Using the renewal reward theorem, it
follows directly that the long-run average cost per time unit are

_cost per cycle K —aQ 1 B & 1
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b. To find the optimal order level, take derivatives with respect to Q: %C’ Q) = —% + %h.

Setting the derivative to 0 yields %h = g—é, hence Q* = /2KX/n, as only the positive solution
is required.

(Remark 1: It is easy to verify that this is an optimum by taking the second derivative of
c(Q))

(Remark 2: Note that Q* may be larger than K/a, in which case only K/a can be ordered.)



