
Exam Applied Stochastic Modeling - Solutions
The solutions are always provisionary

December 16, 2019, 8:45 - 11:30 hours

Exercise 1.
a. As the service times of both customer types follow the same (exponential) distribution,
it follows directly that ES1 = ES2 = ES = 1/µ and ES2 = 2/µ2. Consequently, the residual
service time upon arrival reads

ER =
λES2

2
=

3× 2

2× µ2
=

3

µ2
.

Now, using the loads ρ1 = 1/µ, ρ2 = 2/µ, and combining the above, we obtain

EWQ(1) =
ER

1− ρ1
=

3/µ2

1− 1/µ
=

3

µ(µ− 1)

EWQ(2) =
ER

(1− ρ1)(1− ρ1 − ρ2)
=

3/µ2

(1− 1/µ)(1− 1/µ− 2/µ)
=

3

(µ− 1)(µ− 3)
.

When µ ↓ 3, then EWQ(2) → ∞, as the total load tends to 1 (i.e. µ > 3 is required for
stability of the system, as ρ1 + ρ2 = 3/µ).
b. Let X(t) denote the total number of customers at time t. The transition diagram of
the birth-and-death process X(t)t≥0 is given in Figure 1. The distribution of the number of
customers in the system follows from the balance equations (for sets): 3π(0) = µπ(1) and
1× π(i− 1) = µπ(i), for i = 2, 3, . . .. The first equation yields π(1) = 3/µ π(0), whereas the
combination gives

π(i) =

(
1

µ

)i−1
π(1) = 3

(
1

µ

)i
π(0), i = 1, 2, . . . .

Using normalization (assuming µ > 1 for stability), we obtain that

π(0) =

[
1 +

∞∑
i=1

3

(
1

µ

)i]−1
=

[
1 +

3/µ

1− 1/µ

]−1
=
µ− 1

µ+ 2
.
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Figure 1: State diagram Exercise 1b.

c. Observe that the model now corresponds to an M/M/1/1 queue (or Erlang loss model)
with arrival rate 3 and service rate µ. Due to PASTA, the blocking probability equals
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π(1) = 3
µ+3 . Note that π(1) can either be obtained from solving the appropriate Markov

chain with state space {0, 1}, or by writing out B(1, 3/µ) of the Erlang loss model.

Exercise 2.
a. The transition diagram for the process X(t)t≥0 (number of machines in repair) is given
in Figure 2; the transition diagram for the process Y (t)t≥0 (number of working machines)
is given in Figure 3. Note that X(t)t≥0 corresponds to an Engset delay model and Y (t)t≥0
to an Erlang loss model with arrival rate 1 and service rate λ. The process Y (t)t≥0 seems
simpler when solving directly for the stationary distribution, but it may be argued otherwise
by refering to the Engset model.
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Figure 2: State diagram of X(t)t≥0 (number of machines in repair) for Exercise 2a.
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Figure 3: State diagram of Y (t)t≥0 (number of working machines) for Exercise 2a.

b. LetNi(t) denote the number of machines at facility i at time t. Then (Y (t), N1(t), N2(t))t≥0
constitutes a closed Jackson network (we will refer to 1 as the node of working machines and
2 and 3 will refer to facility 1 and 2, respectively). The routing equations are: γ1 = γ2 + γ3,
γ2 = 2/3γ1, and γ3 = 1/3γ1. Thus, the solution has the following form:

π(n1, n2, n3) = C × (γ1/λ)n1

n1!
e−

γ1/λ × γn2
2 ×

(γ3
2

)n3

,

with C the normalizing constant. For instance, choosing γ2 = 1 yields γ1 = 3/2 and γ3 = 1/2.
Thus,

π(n1, n2, n3) = C × (3/2λ)n1

n1!
e−

3/2λ ×
(

1

4

)n3

,

c. We define the moments that the machine is just repaired (and thus as good as new) as the
regeneration epochs. We have that the expected cycle length is ET = 1

λ+ 2
3×1+ 1

3×
1
2 = 1

λ+ 5
6 .

Using the renewal reward theorem, the long-run fraction of time the machine is working
equals

P(working) =
E[working per cycle]

ET
=

1/λ
1/λ + 5/6

=
6

6 + 5λ
.

Exercise 3.
a. The number of visitors waiting at the gate at time 2 equals the number of arrivals
during [0,2]. Hence, the expected number of visitors at the gate at time 2 then is

∫ 2
0 50tdt =

50
2 t

2
∣∣2
t=0

= 100. As visitors arrive according to a (time-dependent) Poisson process, it follows
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directly that the number of visitors at the gate at time 2 follows a Poisson distribution with
rate 100 (use the first definition).

Similarly, the number of arriving visitors in [2,4] follows a Poisson distibution with rate∫ 4
2 100dt = 200 (use again the first definition).

b. The expected number of visitors in the royal palace m(τ), for τ ∈ [2, 4), consists of the
expected number of arriving visitors during [2, τ ] and the expected number of visitors that
were waiting in front of the gate when the royal palace opened:

m(τ) =

∫ τ

2
100dt+ 100 = 100(τ − 2) + 100 = 100(τ − 1).

For τ ∈ [4, 6), the expected number of visitors in the royal palace equals the expected number
of arriving visitors in [τ − 2, 4]. Thus,

m(τ) =

∫ 4

τ−2
100dt = 100t|4t=τ−2 = 100(4− (τ − 2)) = 100(6− τ).

Please see the figure below for a sketch of m(τ). At time epoch 4, there is a big drop
(expected value of 100) in the number of visitors at the royal palace. These are the visitors
that were waiting in front of the gate at time 2; they all finish their visit after exactly 2
hours, i.e., at time epoch 4.
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c. This example is similar to the airline revenue management example. For marginal ar-
guments, it needs to be decided whether each subsequent ticket should be hold back, or
should be sold for 10 euro’s. When the S-th ticket is hold back, the expected revenue is
15× P(D ≥ S), with D the demand during [2, 4]. Thus, the optimal S is the largest S that
satisfies 15 × P(D ≥ S) ≥ 10. From part a, it follows that D follows a Poisson distribution

with rate 200, such that P(D ≥ S) = 1 −
∑S−1

k=0 e
−200 200k

k! . Some rewriting provides the
desired result, i.e., the optimal S is the largest S that satisfies

S−1∑
k=0

e−200
200k

k!
≤ 15− 10

15
=

1

3
.

Exercise 4.
a. A natural choice for the regeneration epochs are the moments of replenishment, i.e., the
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moment that the inventory becomes 0 (a sketch may be convenient). Just as in the regular
EOQ, the cycle length T is Q/λ. Now, the holding cost per cycle are 1

2QTh (just as in the
regular EOQ). The order cost per cycle are K − αQ. Using the renewal reward theorem, it
follows directly that the long-run average cost per time unit are

C(Q) =
cost per cycle

T
=
K − αQ

Q/λ
+

1

2
hQ =

λK

Q
− αλ+

1

2
hQ.

b. To find the optimal order level, take derivatives with respect to Q: d
dQC(Q) = −Kλ

Q2 + 1
2h.

Setting the derivative to 0 yields 1
2h = Kλ

Q2 , hence Q∗ =
√

2Kλ/h, as only the positive solution
is required.
(Remark 1: It is easy to verify that this is an optimum by taking the second derivative of
C(Q).)
(Remark 2: Note that Q∗ may be larger than K/α, in which case only K/α can be ordered.)
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