
Exam Applied Stochastic Modeling - Solutions
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Exercise 1.
a. It follows directly that the mean service time equals ES = 1. The second moment follows
from

ES2 =

∫ 2

0

1

2
u2du =

1

2

1

3
u3
∣∣∣∣2
u=0

=
4

3
.

Consequently, the residual service time upon arrival reads

ER =
λES2

2
=

2

3
λ.

Now, using the loads ρ1 = 1/2λ× 1/2 = λ/4, ρ2 = 1/2λ× 3/2 = 3λ/4, and combining the above,
we obtain

EWQ(1) =
ER

1− ρ1
=

2λ/3

1− λ/4

EWQ(2) =
ER

(1− ρ1)(1− ρ1 − ρ2)
=

2λ/3

(1− λ/4)(1− λ)

giving the desired result.
b. See the figure below for a sketch of EWQ(1) (green line) and EWQ(2) (red line). Both
functions are increasing and convex.
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For λ → 1, it holds that EWQ(1) = 8/9 < ∞, whereas EWQ(2) → ∞ for λ → 1. Class
1 is only affected by the load of class 1 (ρ1) and the residual service time; as ρ1 is strictly
smaller than 1 (in fact, at most 1/4), the waiting time of class 1 remains bounded. Class 2 is
affected by the total load ρ1 + ρ2 = λ, which converges to 1 such that the total number of
customers tends to grow large.
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Exercise 2.
a. The system is stable for α < µ.
b. Let X(t) denote the number of customers at time t. The transition diagram of the
birth-and-death process X(t)t≥0 is given in Figure 1. The distribution of the number of
customers in the system follows from the balance equations (for sets): 4π(0) = µπ(1) and
απ(i − 1) = µπ(i), for i = 2, 3, . . .. The first equation yields π(1) = 4/µ π(0), whereas the
combination gives

π(i) =

(
α

µ

)i−1
π(1) =

(
α

µ

)i−1 4

µ
π(0), i = 1, 2, . . . .

Using normalization, we obtain that

π(0) =

[
1 +

∞∑
i=1

(
α

µ

)i−1 4

µ

]−1
=

[
1 +

4

µ− α

]−1
=

µ− α
µ− α+ 4

.
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Figure 1: State diagram Exercise 2b.

c. If α = 0, then the process is similar to that of an M/M/1/1 queue. Regeneration epochs
can be the moments at which the queue becomes empty (just after the service completion)1.
We have that the expected cycle length is ET = 1

4 + 1
µ . The costs per cycle is the idle time

per cycle, hence E[costs per cycle] = 1
4 . Using the renewal reward theorem, we find

P(idle) =
E[costs per cycle]

ET
=

1/4
1/4 + 1/µ

=
µ

4 + µ
.

d. First note that we can use the same regeneration epochs as in part c. Also, we still have
that E[costs per cycle] = 1

4 . It remains to determine the expected cycle length2 , which can
be found by conditioning on the idle time:

ET =

∫ t

u=0

(
u+

1

µ

)
× 4e−4udu+

∫ ∞
u=t

(
u+

1

2µ

)
× 4e−4udu

=

∫ ∞
u=0

u× 4e−4udu+
1

µ

(
1− e−4t

)
+

1

2µ
e−4t =

1

4
+

1

2µ

(
2− e−4t

)
,

since the integral on the second line equals 1/4. Hence, by the renewal reward theorem again,
we have

P(idle) =
E[costs per cycle]

ET
=

1/4
1/4 + 1

2µ (2− e−4t)
.

Exercise 3.
a. Let N(t)t≥0 denote the arrival process of customers (i.e. a Poisson process with rate 10

1There are many other regeneration epochs possible in this case.
2An alternatigve is to write ET = EA+ P(A ≤ t) 1

µ
+ P(A > t) 1

2µ
, with A denoting the interarrival time.
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starting at time 0). We appy thinning of Poisson processes as follows: for an arrival at time
t ∈ [0, τ ], it is considered to be of type 1 if the service time is larger then τ − t (denoted
as process N1(t)t∈[0,τ ]) and of type 2 otherwise. Then, for t ∈ [0, τ ], N1(t)t∈[0,τ ] is a Poisson

proces with rate 10e−(τ−t).
Now, the number of customers present at time τ equals N1(0, τ), with N1(s, t) the number

of type 1 arrivals during [s, t]. Note that N1(0, τ) is a Poisson random variable with rate

m(τ) =

∫ τ

0
10e−(τ−t)dt = 10

∫ τ

0
e−tdt = 10

(
1− e−τ

)
,

giving the desired result.
b. Observe that a customer arriving at time t ∈ [0, τ ] is still present at time τ if the service
time exceeds τ − t. Hence, we may use the same splitting as in part a. If a customer at time
τ is big, it must have arrived before time τ − 2. Thus, the number of big customers at time
τ equals N1(0, τ − 2), for τ ≥ 2. Note that N1(0, τ − 2) is a Poisson random variable with
rate

mbig(τ) =

∫ τ−2

0
10e−(τ−t)dt = 10 e−τe+t

∣∣τ−2
t=0

= 10
(
e−2 − e−τ

)
,

giving the desired result.
c. Please see the figure below for a sketch of mbig(τ). The figure displays that the queue
gradually increases until it reaches its equilibirium, i.e., reflecting the startup of the system.
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Exercise 4.
a. The routing equations are γ1 = λ + p1γ1 and γ2 = p2γ1. This gives γ1 = λ/(1− p1) and
γ2 = p2λ/(1− p1). The system is stable if γ1/3 < 1 and γ2/3 < 1. As γ2 < γ1, we need that
λ/(1− p1) < 3 for the system to be stable.

This is a Jackson network and the stationary distribution is thus of product form:

π(n1, n2) =
(

1− γ1
3

)(γ1
3

)n1
(

1− γ2
3

)(γ2
3

)n2

=

(
1− λ

3(1− p1)

)(
λ

3(1− p1)

)n1
(

1− p2λ

3(1− p1)

)(
p2λ

3(1− p1)

)n2

.

b. Let Xi(t) denote the number of customers at station i at time t. The transition diagram
of the Markov process (X1(t), X2(t))t≥0 is depicted in Figure 2. The balance equations are,
for n2 ≥ 1,

(λ+ 6)π(n1, n2) = λπ(n1 − 1, n2) + 3π(n1 + 1, n2 − 1) + 3π(n1, n2 + 1), n1 ≥ 1

(λ+ 6)π(0, n2) = 6π(0, n2 + 1) + 3π(1, n2 − 1).
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Figure 2: State diagram for Exercise 4b. Only outgoing transitions are shown.

Exercise 5.
a. The three terms of P (S) correspond to the three different sales options: (i) K − S is the
deterministic number of items sold to the trader, (ii) Emin(D,S) is the expected sales that
they try to sell themselves, and (iii) E(S − D)+ are the expected number of unsold items
that go to the auction.
b. Assume for now that the demand is continuous and let FD(·) denote the distribution
function. Note that Emin(D,S) = S −E(S −D)+. Hence, the expected income can also be
written as

P (S) = p2K − (p2 − p1)S + (v − p1)E(S −D)+.

Taking derivatives with respect to S yields P ′(S) = p1−p2 +(v−p1)FD(S), since d/dS E(S−
D)+ = FD(S). Setting P ′(S) = 0 (and noting this provides the unique maximum) gives
FD(S) = (p1 − p2)/(p1 − v), or

S∗ = F−1D

(
p1 − p2
p1 − v

)
.

If the demand is discrete, we may use marginal arguments. If the organization tries to sell
the Sth item themselves, the expected income is p1(1−FD(S))+vFD(S) = p1−(p1−v)FD(S).
If this items is sold to the trader, the income is p2. Hence, the organization should try to
sell themselves as long as p1− (p1− v)FD(S) ≥ p2, i.e. S∗ is the largest integer that satisfies
this equation.
c. If v > p2 it is always more profitable to try to sell themselves, as the value at the auction
is also larger than the value obtained from the trader. Hence, S∗ = K in this case. Observe
that the (p1 − p2)/(p1 − v) > 1 (if v ≤ p1), so that the inverse in that point is not well defined.
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