
Exam Applied Stochastic Modeling - Solutions
The solutions are always provisionary

December 19, 2016, 8:45 - 11:30 hours

Exercise 1.

a. Tourists arrive according to an inhomogeneous Poisson process, so the total number of
tourists arriving during [0,8] follows a Poisson distribution with mean

∫ 8

0
λ(t)dt =

∫ 4

0
12dt+

∫ 8

4
8dt = 4× 12 + 4× 8 = 80.

In the above λ(t) denotes the arrival rate at time t.

b. We have an Mt/G/∞ queue, for which m(τ) =
∫ τ
0 λ(t)P(S > τ − t)dt, with S a random

variable representing the time of a bike tour. Now, using that S follows an exponential
distribution with rate 0.5, we have, for τ ∈ [0, 4],

m(τ) =

∫ τ

0
12e−0.5(τ−t)dt = 12

∫ τ

0
e−0.5tdt = 24(1− e−0.5τ )

For τ ∈ [4, 8], we obtain

m(τ) =

∫ 4

0
12e−0.5(τ−t)dt+

∫ τ

4
8e−0.5(τ−t)dt

= 24e−0.5τ (e2 − 1) + 16(1− e−0.5(τ−4)) = 16− 24e−0.5τ + 8e−0.5(τ−4).

c. A sketch of m(τ) can be found in Figure 1. The peak is at time 4, as this is the end of
the period with the high arrival rate (and due to the distribution of the bike tour, the load
adapts exponentially fast). Furthermore, observe the start-up phase during [0, 4] where the
mean number of customers converges exponentially fast to an equilibrium. After time 4, the
system adapts to the new (lower) arrival rate.

Figure 1: Sketch of m(τ) for Exercise 1c.

Exercise 2.

a. Define X(t) as the number of customers in the system at time t. Then {X(t), t ≥ 0} is a
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continuous time Markov chain on the state space {0, 1, . . .}. The transition diagram is given
in Figure 2.
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Figure 2: State diagram Exercise 2a.

The balance equations (for sets) are: λπi−1 =
2
3πi, for i = 1, 2, . . ., This gives πi =

3
2λπi−1 =

. . . =
(

3
2λ

)i
π0. (Note the similarity with the standard M/M/1 queue.) Normalization gives

∞
∑

i=0

(

3

2
λ

)i

π0 = 1,

such that π0 = 1 − 3
2λ and thus πi = (1 − 3

2λ)
(

3
2λ

)i
. The expected waiting time EWQ (for

the first service time) is obtained using

EWQ = ELQ × 1 =
3
2λ

1− 3
2λ

.

The system is stable for λ < 2
3 .

(An alternative is to interpret the system as a special type of queueing network, consisting
of one single-server queue.)
b. Observe that the service time S of an arbitrary customer follows a hyperexponential
distribution. Let S1 and S2 be exponentially distributed with rates 1 and 2, respectively.
We then have

ES =
λ

λ+ λ/3
ES1 +

λ/3

λ+ λ/3
ES2 =

3

4
× 1 +

1

4
×

1

2
=

7

8

ES2 =
3

4
×

2

12
+

1

4
×

2

22
=

13

8

The system under consideration is thus an M/H2/1 queue with total arrival rate λ+ λ
3 = 4

3λ
and load ρ = 4

3λ× 7
8 = 7

6λ. For λ < 6
7 ,

EWQ =
λES2

2(1− ρ)
=

4
3λ× 13

8

2(1− 7
6λ)

=
13λ

2(6− 7λ)
.

c. We now have an M/G/1 priority queue. Using b, we get ER = λES2

2 = 4
3λ × 13

8·2 = 13
12λ.

Moreover, for the load of the two classes, ρ1 =
λ
3 ×

1
2 = λ

6 and ρ2 = λ× 1. Substituting these
parameters, yields

EWQ(1) =
ER

1− ρ1
=

13
12λ

1− λ
6

EWQ(2) =
ER

(1− ρ1)(1− ρ1 − ρ2)
=

13
12λ

(1− λ
6 )(1−

7
6λ)
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Class 1 (unsatisfied customers) improves in terms of expected waiting time, but class 2 not.

Exercise 3.

a. See Figure 3.1 in the notes of Koole (page 44).
b. Regeneration epochs are the moments when the subway arrives. The function given
describes the function sketched in a (and is the time until arrival of the next subway). Let
S denote a generic interarrival time between two subways. Now, the mean waiting time can
be determined as (also, see p. 44 of the notes of Koole)

E[cost per cycle]

E[cycle length]
=

1

ES
E

[
∫ S

0
S − t dt

]

=
1

ES
E

[
∫ S

0
t dt

]

=
ES2

2ES

c. Using the renewal reward theorem again, we now obtain the following long-run average
cost (with FS(·) the distribution function of the interarrival times)

1

ES
E

[
∫ S

0
(S − t)2 dt

]

=
1

ES
E

[
∫ S

0
t2 dt

]

=
1

ES
E

[
∫ ∫ s

0
t2dtdFS(s)

]

=
ES3

3ES
.

d. Yes, the regeneration epochs are the moments when even numbered subways arrive.

Exercise 4.

a. Let λ denote the arrival rate and µ the service rate, such that ρ = λ/(2µ). The transition
diagram for the number of customers in het system (having limiting distribution pi) can be
found in Figure 3.
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Figure 3: State diagram Exercise 4a.

The balance equations are then as follows: λp0 = µp1 and λpi−1 = 2µpi, for i = 2, 3, . . ..
Expressing in terms of p0 yields p1 = 2ρp0 and, for i = 2, 3, . . .,

pi =
λ

2µ
pi−1 = ρi−1p1 = 2ρip0.

Normalization provides

p0 + p0

∞
∑

i=1

2ρi = 1.

Working out the summation yields p0
1+ρ
1−ρ = 1, and the result follows.

b. Let γi represent the effective arrival rate to queue i, i = 1, 2. The routing equations are

γ1 = λ+
1

5
γ1 +

1

2
γ2

γ2 =
4

5
γ1.

Solving these equations yields γ1 =
5
2λ and γ2 = 2λ. The loads of both queues are ρ1 =

γ1
2 =

5
4λ and ρ2 =

γ2
2·0.5 = 2λ. The network is thus stable for λ < 1

2 .
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c. For a generalized Jackson network we have π(n1, n2) = π1(n1)π2(n2), with πi(ni) the
marginal distribution of queue i, i = 1, 2. Using a, we obtain, for n1, n2 ≥ 1,

π(0, 0) =
1− ρ1
1 + ρ1

×
1− ρ2
1 + ρ2

π(n1, n2) =
1− ρ1
1 + ρ1

2ρn1

1 ×
1− ρ2
1 + ρ2

2ρn2

2

with ρi defined in b.

Exercise 5.

a. The terms of P (S) can be explained as follows. The expected number of sales is
E[min(D,S)] = ED − E(D − S)+; multiplied with the price of 20 gives the expected in-
come. Alternatively, 20ED can be interpreted as the expected income in case of perfect
information (no randomness in demand) and 20E(D − S)+ is missed income due to lack
of stock. The term h(S) represents the total order cost, and E(S − D)+ are the expected
number of leftovers, for which t is charged per leftover.

b. We should maximize P (S) or minimize the cost C(S) = h(S)+20E(D−S)++tE(S−D)+.
Let FD(·) and fD(·) be the distribution function and density of S, respectively. Taking the
derivative with respect to S yields

d

dS
C(S) = h′(S)− 20(1− FD(S)) + tFD(S) = h′(S)− 20 + (t+ 20)FD(S).

Setting the derivative to 0 provides the equation

h′(S) + (t+ 20)FD(S) = 20. (1)

This is an optimum, as the cost function is convex: d2

dS2C(S) = h
′′

(S) + (t+ 20)fD(S) > 0.

c. Suppose that h(S) = 8S, then h
′

(S) = 8 and Equation 1 becomes 8+(t+20)FD(S) = 20.
Solving for S provides

S∗ = F−1
D

(

12

t+ 20

)

.

For given t, the probability of leftovers when ordering the optimal order quantity S∗ is

P(D < S∗) = FD(S
∗) = FD

(

F−1
D

(

12

t+ 20

))

=
12

t+ 20
.

Now, solving 12
t+20 ≤ 0.1 yields t ≥ 100.

This is not realistic as the tax would be at least 5 times the selling price.
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