## Exam Applied Stochastic Modeling 10 February 2009

This exam consists of 4 problems, each consisting of several questions.

All answers should be motivated, including calculations, formulas used, etc.

It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with hand-written notes.

The minimal note is 1. All question are equally counted.

The use of a calculator and a dictionary are allowed.

A table of the Poisson distribution is attached.

- 1. Consider a system with 2 machines and a repairman. Machines fail independently with rate  $\lambda$ . The repairman repairs machines at rate  $\mu$ .
- a. Model this system as a birth-death process.
- b. Calculate the stationary distribution and use this to derive the long-run expected number of machines that are functioning.
- c. Derive the long-run distribution at moments that a machine fails.
- d. Use this to derive the distribution of the long-run average time a machine waits before it is taken into service and calculate its expectation.
- 2. Consider a continuous-time multi-order deterministic-demand continuous-product inventory model with  $\lambda = 5$ , K = 10, h = 1 and L = 1.
- a. Compute the optimal re-order level and re-order size.

Now demand is stochastic; it occurs according to a Poisson process with rate  $\lambda = 5$ . For the rest the system is the same. Items that are not available are backordered.

- b. We use the same re-order policy. Estimate the probability that backorders occur in a cycle.
- c. It is the objective to avoid backorders in at least 9 out of 10 cycles. How should we choose the re-order policy to achieve this?

3. Consider an M|G|1 queue with arrival rate 0.5 and service time distribution S = X + Y, with X and Y independent and both exponentially distributed with rates 1 and 2, respectively.

a. Calculate  $\mathbb{E}S$ ,  $\mathbb{E}S^2$ ,  $\sigma^2(S)$  and  $c^2(S)$ .

b. Calculate the expected waiting time and the expected sojourn time for the M|G|1 queue.

c. What is the probability that an arbitrary arrival finds an empty system?

4. Consider a homogeneous Poisson process on [0,T] with rate  $\lambda$ .

a. What is the expected number of arrivals in this interval?

- b. Let the first arrival occur at t. Conditioned on this event, what is the expected number of arrivals in [0,T]?
- c. Calculate the expected number of arrivals in [0,T] again, but now using the law of total probability and the answer found under b.
- d. Repeat a, b and c for an inhomogeneous Poisson process.

Table with value of P(X>k) with X with a Poisson distributed random variable with mean mu

|        |    |   | values of mu |       |       |       |       |       |       |       |       |       |
|--------|----|---|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| values | of | k | 1            | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| 0      |    |   |              |       |       |       |       |       |       | 1.000 |       |       |
| 1      |    |   | 0.264        |       | 0.801 |       |       |       |       | 0.997 |       |       |
| 2      |    |   | 0.080        |       | 0.577 |       |       |       |       | 0.986 | 0.994 | 0.997 |
| 3      |    |   | 0.019        |       | 0.353 | 0.567 |       |       |       | 0.958 | 0.979 | 0.990 |
| 4      |    |   | 0.004        |       |       |       |       |       |       | 0.900 |       | 0.971 |
| 5      |    |   | 0.001        | 0.017 | 0.084 | 0.215 | 0.384 | 0.554 | 0.699 | 0.809 | 0.884 | 0.933 |
| 6      |    |   | 0.000        | 0.005 | 0.034 | 0.111 | 0.238 | 0.394 | 0.550 | 0.687 | 0.793 | 0.870 |
| 7      |    |   | 0.000        | 0.001 | 0.012 | 0.051 | 0.133 | 0.256 | 0.401 | 0.547 | 0.676 | 0.780 |
| 8      |    |   | 0.000        | 0.000 | 0.004 | 0.021 | 0.068 | 0.153 | 0.271 | 0.407 | 0.544 | 0.667 |
| 9      |    |   | 0.000        | 0.000 | 0.001 | 0.008 | 0.032 | 0.084 | 0.170 | 0.283 | 0.413 | 0.542 |
| 10     |    |   | 0.000        | 0.000 | 0.000 | 0.003 | 0.014 | 0.043 | 0.099 | 0.184 | 0.294 | 0.417 |
| 11     |    |   | 0.000        | 0.000 | 0.000 | 0.001 | 0.005 | 0.020 | 0.053 | 0.112 | 0.197 | 0.303 |
| 12     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.002 | 0.009 | 0.027 | 0.064 | 0.124 | 0.208 |
| 13     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.013 | 0.034 | 0.074 | 0.136 |
| 14     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.006 | 0.017 | 0.041 | 0.083 |
| 15     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.008 | 0.022 | 0.049 |
| 16     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.011 | 0.027 |
| 17     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.005 | 0.014 |
| 18     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.007 |
| 19     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 |
| 20     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 |
| 21     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
| 22     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 23     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 24     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 25     |    |   | 0.000        | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |