Faculty of Science Final Applied Analysis: Financial Mathematics
Department of Mathematics, VU 31-05-2023, 15:30-17:45

Use of calculator, phone, laptop, book or notes is not allowed.
The exam consists of 4 questions on two pages.
A formula sheet on two pages is provided at the end of the exam.
Please write the calculations and arguments leading to your answers.
Motivate your answers.
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1. Consider a put option contract that has the following form: it gives you
the right to sell a share for a fixed exercise price E at several pre-determined
dates between now and an expiry date T' (you are also allowed to exercise at
T). Denote the value of this put option by P(S,t); denote also the values of the
American and European put options by Pam(S,t) and Pg.(S,t), respectively.

a. What inequality exists between these three put option prices?

b. Obviously, a similar kind of call option can be considered: it gives you the
right to buy a share for a fixed price E at several pre-determined dates between
now and an expiry date T, including T itself. Under which condition do we have
equality for the three kinds of call option: this one, the European one and the
American one?

:_ a. Clearly Pgy(S,t) < P(S,t) < Pam(S,t) (does not need any argumenta-
s X tion, you get progressively more rights, so you have to pay more). 3 points,
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2. A perpetual American put option gives the holder the right to sell a share
at any time in the future for a fixed exercise price E. (So, this is in fact an
American put with 7' = c0.) Denote the value of the option by V (S,1).

It can be shown that this option is not explicitly dependent on ¢, so %~
Hence we can actually write V(S) instead of V (S, t).

Give the ordinary differential equation which V/(S) should satisfy before it
Is exercised. What is the value of V(S) once it is exercised?

b. The point where it is optimal to exercise is denoted (as usual) by S¢. This
will also not depend on ¢ of course. What continuity conditions should be
satisfied in the point S for the perpetual American put option?

c. Consider the function

6V =0

E-S for S < S¢

VRS i= —2r /o
(5) (E—Sf)(%) / for S > S¢
where S = 23:_57 -
Show that this function satisfies the differential equation you found in part a.
for S > S, and satisfies the continuity conditions you found in part b. Also
show that it satisfies limg ;oo V(S) = 0, which is the boundary condition at
infinity. (You may assume that the risk-less interest rate r is positive.)

a. Since the partial derivative with respect to time is zero, and since any op-
tion before being exercised or before expiry satisfies the Black-Scholes equation
1 point, we have that this option satisfies the ordinary differential equation

1 2 2@’V dVv
a°S ¥ + 7S 7S V. =10.
1 point Also, after exercise, the value is E — S (as we will not exercise when

the value S is bigger than F) 1 point.

b. The continuity conditions are the same as the one from the ordinary
American put 1 point, so V' is continuous in Sy 1 point and V'(Sy) =
1 point. Alternatively the latter can be phrased as V' is continuous, or as A

is contmuous, or as A = —1 in the point Sy.
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3. Given is a function u(z, 7) which satisfies the partial differential equation

Oou 0%y Ou
or  0x2 % 655

and with intial condition u(z,0) = uy(z) for z € R.

. Write u(z,7) = e**tP7y(z, 7). Determine a and [ in terms of ¢ such that
'u(:z: T) satisfies the heat equation.

b. Find an integral expression for u(z, 7).

a. We have

ou — & +PT (ﬁv(:c T) + 8v>

or ot
5u __az+BT 3’0
5 (av(:z: T) + 8:1:)
0%u

Ov 0%
or 0x2)°

—— —e%2th7 (azv(a:, T) + 2c

2 points Inserting in the partial differential equation for u, we obtain after
dividing by the exponential term

2
Bu+ — oy = oa’v(z,T) + 2a6v + —= o +c (av(a: T) + g:;)

ot dzr ' Ox?
1 point Since v has to satisfy the heat equation, we see that o and S are
2 2 2
determined from 8 = a?+ca and 2a+c=0. So,a = —£and B = &% <.
1 point

b. Use the formula for v(z,7) from the formula sheet to obtain:

e —(ca:/2+c 'T'/4)

| 24/ —00

vo (s)e‘(x's)z/ Y ds
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4.a Use Taylor’s theorem to show that

ol i G e e D T 2h) + o)

b. Use this to derive the following finite difference approximation for thga heat
equation e 2t

ymtl

m m m m m m
n Up Un+2 St Upn+1 — 4’LL ¥ Up—1 T Up_2

5t 5(0z)2
Introduce a = 506 x)7 (pay attentlon this is different from what you are used to)

Rewrite the above equatlon as an explicit finite difference method, expressing
u™t1 explicitly.

c. Now assume errors are of the form € = A™sin(nw). You may assume
that these errors satisfy the same equation you found in part b. Show that
A=1—a(4—2cos(w) — 2cos(2w)).

T

d. Show that the method is stable when —7) < 2 and unstable when B2)? >

You may make use of the fact that 0 < 4 —2 cos(w) 2 cos(2w)) < 6% asis easﬂy
verified by elementary calculus (but you do not have to show this).

a. We have

+ 2" (2) + O(hY),

Fla+h) = f(@) + hf'(z) + 5K (2) + 5" (z) + O(hY)

1

fla— h) = £(@) — hf'(@) + H2F" (@) — = F"(2) + O(hH),

a2 = £() = 2hf (@) + 207" (a) - 1" (@) + O(h.

2 pomté A these and subtract 4 f (a:) left and rlght to a.mve at

f(:c + 2h) % f(:v +

f(z + 2h) = f(z) + 2hf!(z) + 2R* f ()

~H@ + i~ 1)+ 1 = 2h) = 5K "(2) + ().
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c. Use that e™ satisfies the same equation as the uz' and insert to get
A" sin(nw) = \™ (asin((n + 2)w) + asin((n + 1)w) + (1 — 40) sin(nw) + asin((n — 1)w) + asin((n — 2)w)) -

1 point. Divide by A™ 1/2 point and use the formula for sin(a-+b) four times
1 point. Several terms cancel, and then we are left with

) sin(nw) = sin(nw) (1 + o(—4 + 2 cos(w) + 2 cos(2w))) .

1 point. Divide by sin(nw) to get the desired formula 1/2 point.

d. First note that A < 1 for all o > 0 since 4 — 2cos(w) — 2 cos(2w) > 0.
So the method is stable (errors will decay), when A > —1 1 point. Knowing

that 4 — 2 cos(w) — 2cos(2w) < 67 = 2 we see that A > —1 for all w when
1-— %15-01 > —1 1/2 point. That is the case when %?a < 2, equivalently, a < -2-8-5-

1/2 point. Recall that @ = S(g;?-, so the method is stable when —(75‘%’)—; < %

1/2 point. Instability will occur when there is a value of w for which A < —1,
which is the case when -(-gsmi)-g > % by the same reasoning 1 /2 point.




Formulas

Binomial tree related

Vu—Vd
Replicating portfolio V' = AS + II, where A = g'—g

Value of V' as an expected value
erJtSn =3 ] Sd
—70 =
V=€ gV + (1 —q)Va), q [y

Model for stock price
dS = S(pdt + odX)

where dX is normally distributed with expectation zero and variance dt.

S itself then has a lognormal distribution. : :
Functions of S and It6’s lemma: use Taylor’s theorem and replacing dX* by

dt

oV oV LG
aVi= -6—Sd5+ Edt -+ 5@;0’ S dt.

Payoff functions
For call and put:
C(S,T) = max(S — E,0), P(S,T) = max(E — S, 0).

Asset or nothing: S if S > E, and 0 whenvener S < E.
Cash or nothing: F if S > E, and 0 whenvener S < E.

Black Scholes equation

Derived by considering V = AS + II; using Itd’s lemma and remembering that
IT should be a bond, we derive
ov 18V
gt =2 F52
With proper initial and boundary conditions we derive valyes for the call and
put options. .

o485 = (Vi — Sgi;.),

Formulas for call and put option
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Reduction of Black Scholes equation to heat equation
S =Fe®, 1 = (" —t)202.
v(Z,T) = LV(S,1), w(z,7) = e~ (@@ t8r)y (5 1),

=i 1
where o = ——§-(k.-— 1), 8= —%(k+1)2. Then v(z, T) satisfies the heat equation
when V'(S,t) satisfies the Black Scholes equation.

Taylor’s Theorem
When f is n + 1 times differentiable then

NP 1 1 n £(n (’ n
S @) e h T (1),

where z + 6 is between z and  + h.
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