
1. Given is the stock price in a binomial tree as follows:
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You may assume in this exercise that the interest rate r = 0.
a. Determine the martingale probabilities q for every fork of the tree.
b. Consider the cash or nothing option, paying out a fixed amount of E = 30

when S ≥ E = 30 at time level three, and nothing when S < E. Determine the
price of the option at every node in the tree.

c. For all nodes at time level two, determine the replicating portfolio, i.e.
determine the values of ∆ and Π.

d. Explain how the structure of the replicating portfolio will change for the
bottom node at time level two when E changes from 30 to any value higher
than 30.
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2. Consider the European call option C(S, t, T,E).
a. Show by a no-arbitrage argument that for T1 > T2 one has C(S, t, T1, E) >

C(S, t, T2, E).
b. Show that ∂C

∂T > 0 by computing the partial derivative explicitly. You

may use that we proved in class that SN ′(d1) = Ee−r(T−t)N ′(d2).
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3. Given is the option V (S, t) which pays out at expiry date T the value of the
stock S when S < E and a fixed amount E when S ≥ E.

a. Show how V (S, T ) can be expressed in terms of S and the payoff C(S, T )
of the European call option, and sketch the payoff function.

b. Give an explicit formula for the value V (S, t) of the option for all S and
t in terms of S,E, t, T, r and σ, and justify your answer.
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4. Consider the partial differential equation

∂u

∂τ
=
∂2u

∂x2
− ∂u

∂x
+ u, τ > 0, x ∈ R,

with initial condition u(x, 0) = f(x). In this exercise we shall consider a numer-
ical method to solve this equation. As usual, consider a grid with stepsize δx in
the x direction, δτ in the τ direction, and denote u(nδx,mδτ) by umn .

a. Use the backward difference for the τ derivative, the symmetric cen-
tral difference for the second order derivative in x and the central difference
for the first derivative in x to derive a formula expressing umn in terms of
um+1
n−1 , u

m+1
n , um+1

n+1 . Use α = δτ
(δx)2 , β = δτ

2δx and γ = δτ .

b. How should we take u0n?
c. Discuss stability of the method.
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5. For c ≥ 0 consider the partial differential equation

∂u

∂τ
=
∂2u

∂x2
+ c

∂u

∂x
, τ > 0, x ∈ R,

with initial condition u(x, 0) = f(x).
Assume that limx→±∞ f(x) and limx→±∞ f ′(x) exist and that f is twice

continuously differentiable.
For c > 0 consider the following function

u(x, τ) =
1√
π

∫ ∞
−∞

f(x+ cτ − 2
√
τz)e−z

2

dz.

In this exercise you will show that this function satisfies the partial differential
equation.

a. Assuming that differentiation (both with respect to τ and with respect
to x) and integration may be interchanged, check that

∂u

∂x
=

1√
π

∫ ∞
−∞

f ′(x+ cτ − 2
√
τz)e−z

2

dz,

∂u

∂τ
=

1√
π

∫ ∞
−∞

f ′(x+ cτ − 2
√
τz)

(
c− 1√

τ
z

)
e−z

2

dz.

b. Derive a similar formula for ∂2u
∂x2 , and use that formula and integration by

parts (partiële integratie) to see that the function u(x, τ) satisfies the equation
∂u
∂τ = ∂2u

∂x2 + c∂u∂x .
c. Assuming that you may interchange limτ↓0 and the integral, show that

indeed u(x, 0) = f(x).
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