Faculty of Science	Midterm exam Analysis II
Department of Mathematics	29-03-2022
Vrije Universiteit Amsterdam	12:15-14:30

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Solve the initial value problem

$$\begin{cases} y'(x) + e^{2y(x)} \cdot (2x^3 + x) = 0, \\ y(0) = 0. \end{cases}$$

2. Find the general solution of

$$4y''(x) - 4y'(x) + 5y(x) = 5x + 1.$$

- 3. Prove in two different ways that the series $\sum_{n=3}^{\infty} \frac{2}{n^2 2n}$ is convergent:
 - a) using the Limit Comparison Test,
 - b) using the Integral Comparison Test.
- 4. Determine if the following series are convergent or divergent. If the series is convergent explain if it is conditionally convergent or absolute convergent.

a)
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1+e^{-n}}{\sqrt{n}}$$
,

b)
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{2^n \cdot n^2}$$
.

5. Consider the sequence of functions $\{f_n\}$ defined by $f_n(x) = \frac{nx^2 + \cos x}{n+1}$.

1

- a) Prove that $\{f_n\}$ converges pointwise for all $x \in \mathbb{R}$.
- b) Determine if $\{f_n\}$ converges uniformly on [-1, +1].
- c) Compute $\lim_{n\to\infty} \int_{-1}^{+1} f_n(x) dx$.

Please turn over

- 6. Consider the series of functions $\sum_{n=1}^{\infty} \frac{\sin(nx+1)}{n^2+x^2}.$
 - a) Prove that this series converges normally (= absolutely uniformly) to some function F on $[1, \infty)$.
 - b) Is the sum function F continuous on $[1, \infty)$? Explain your answer.
- 7. Consider the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n+2}}{n \cdot 4^n}.$
 - a) Determine its radius of convergence.
 - b) Determine its interval of convergence.
- 8. Consider the function $f(x) = \cos(x^2 2x + 1)$.
 - a) Find the power series representation of f(x) centered at x = 1.
 - b) Use your result to express $\int_{1}^{2} f(x) dx$ as the sum of an alternating series of real numbers.

Scores:

$$Grade = \frac{\# points}{4} + 1$$