Faculty of Science	Midterm exam Analysis II
Department of Mathematics	29-03-2022
Vrije Universiteit Amsterdam	12:15-14:30

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

- 1. Using separation of variables we get $-e^{-2y} dy = (2x^3 + x) dx$. Integration on both sides and dividing by $\frac{1}{2}$ we get $e^{-2y} = x^4 + x^2 + C$ and hence $y = -\frac{1}{2} \ln(x^4 + x^2 + C)$ with C = 1 for y(0) = 0.
- 2. First we solve the characteristic equation $4r^2 4r + 5 = 0$ with discriminant $D = -8^2$ in order to get $r_{1,2} = \frac{1}{2} \pm i$, so that the general solution of the corresponding homogeneous equation is given by $y(x) = e^{\frac{1}{2}x}(A\cos x + B\sin x)$ for $A, B \in \mathbb{R}$. In order to find a particular solution we insert the ansatz $y_p(x) = ax + b$ in order to get 5ax + (5b 4a) = 5x + 1 and hence a = b = 1. The general solution is hence $y(x) = e^{\frac{1}{2}x}(A\cos x + B\sin x) + x + 1$ with $A, B \in \mathbb{R}$.
- 3. a) $\lim_{n\to\infty} \left(\frac{2}{n^2-2n}/\frac{1}{n^2}\right) = 2$ and $\sum_{n=3}^{\infty} \frac{1}{n^2}$ converges.
 - b) Since $\frac{2}{x(x-2)} = \frac{1}{x-2} \frac{1}{x}$ we have $\int_{3}^{\infty} \frac{2}{x(x-2)} dx = \lim_{b \to \infty} (\ln(x-2) \ln x) \Big|_{3}^{b}$ with $\lim_{b \to \infty} (\ln(b-2) \ln b) = \lim_{b \to \infty} \ln(1 \frac{2}{b}) = 0$.
- 4. a) Since $1+e^{-n}$ decreases and \sqrt{n} increases with n, $f(n)=\frac{1+e^{-n}}{\sqrt{n}}$ is decreasing. Together with f(n)>0 and $\lim_{n\to\infty}f(n)=0$, we get convergence of the series using the Leibniz Alternating Series Test. Since $\frac{1+e^{-n}}{\sqrt{n}}>\frac{1}{\sqrt{n}}$ and $\sum_{n\to\infty}\frac{1}{\sqrt{n}}$ diverges, we have that $\sum_{n=1}^{\infty}\frac{1+e^{-n}}{\sqrt{n}}$ diverges by the Comparison Test. Hence the series only converges conditionally.
 - b) For $a_n := \frac{(n+1)!}{2^n \cdot n^2}$ we have $\frac{a_{n+1}}{a_n} = \frac{n+2}{2} \cdot \frac{n^2}{(n+1)^2}$ and hence $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \infty$, so the series diverges using the Limit Ratio Test.
- 5. a) $\lim_{n \to \infty} \frac{nx^2 + \cos x}{n+1} = \lim_{n \to \infty} \frac{x^2 + \frac{1}{n}\cos x}{1 + \frac{1}{n}} = x^2 = f(x)$ for all $x \in \mathbb{R}$.
 - b) $|f_n(x) f(x)| = \frac{|\cos x x^2|}{n+1} \le \frac{2}{n+1}$ for $|x| \le 1$. Since $\lim_{n \to \infty} \frac{2}{n+1} = 0$, we have uniform convergence.
 - c) $\lim_{n \to \infty} \int_{-1}^{+1} f_n(x) dx = \int_{-1}^{+1} \left(\lim_{n \to \infty} f_n(x) \right) dx = \int_{-1}^{+1} x^2 dx = \frac{2}{3}.$

- 6. a) Since $\left|\frac{\sin{(nx+1)}}{n^2+x^2}\right| < \frac{1}{n^2}$ for $x \in [1,\infty)$, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, normal (= absolutely uniform) convergence of the series follows from Weierstrass M-test.
 - b) Since normal convergence implies uniform convergence, the limit function is continuous.
- 7. a) For $a_n = \frac{1}{(n-2) \cdot 4^{n-2}}$, we have $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{4} \cdot \lim_{n \to \infty} \frac{n-1}{n-2} = \frac{1}{4}$ and hence the radius of convergence is R = 4.
 - b) For x=7, we have that $\sum_{n=1}^{\infty} \frac{(7-3)^{n+2}}{n \cdot 4^n} = 16 \cdot \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (as p-series with p=1), while for x=-1 we have that $\sum_{n=1}^{\infty} \frac{(-1-3)^{n+2}}{n \cdot 4^n} = 16 \cdot \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges (by the Leibniz alternating series test). By (a), we have convergence if |x-3| < 4 and divergence if |x-3| > 4, so that the interval of convergence is I=[-1,7).
- 8. a) $f(x) = \cos((x-1)^2) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{((x-1)^2)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{(x-1)^{4n}}{(2n)!}$.
 - b) $\int_{1}^{2} f(x) dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} \cdot \int_{1}^{2} (x-1)^{4n} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)! \cdot (4n+1)}.$

Scores:

$$Grade = \frac{\# points}{4} + 1$$