Faculty of Science	2 nd partial exam Analysis II
Department of Mathematics	24-05-2019
Vrije Universiteit Amsterdam	12:00-14:45 uur

The use of a calculator, a book, or lecture notes is <u>not</u> allowed. Do not just give answers, but give calculations and explain your steps.

- 1. Let $G = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0, x_2 > 0, x_1 + x_2 < 1\}.$
 - a) Give an accumulation point of G that is not interior.
 - b) Is G open, closed, or neither? (Prove or disprove your answer).
 - c) Which is the smallest compact set containing G? (Justify your answer).
- 2. Is the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x_1, x_2) = \begin{cases} \frac{x_1^5 + x_2^5 + x_1 x_2^3}{x_1^4 + x_2^4} & \text{if } (x_1, x_2) \neq (0, 0), \\ 0 & \text{if } (x_1, x_2) = (0, 0). \end{cases}$$

continuous on \mathbb{R}^2 ?

3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x_1, x_2) = \begin{cases} \frac{x_1^2 x_2^3}{x_1^2 + x_2^2} & \text{if } (x_1, x_2) \neq (0, 0), \\ 0 & \text{if } (x_1, x_2) = (0, 0). \end{cases}$$

- a) Calculate $\frac{\partial f}{\partial x_1}(0,0)$ and $\frac{\partial f}{\partial x_2}(0,0)$.
- b) Is f (totally) differentiable at (0,0)?
- 4. The function $f: \mathbb{R}^2 \to \mathbb{R}$ has continuous second partial derivatives on \mathbb{R}^2 . Let $z = f(x_1, x_2)$ with $x_1 = u_1^2 u_2$, $x_2 = u_1 + 2u_2$. Calculate $\frac{\partial z}{\partial u_1}$ and $\frac{\partial^2 z}{\partial u_2 \partial u_1}$ in terms of u_1 and u_2 and partial derivatives of f.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x_1, x_2) = \frac{1}{2 + x_1 2x_2}$. Determine the second order Taylor polynomial near (2, 1).
- 6. Consider the system of equations

$$xe^{y} + uz - \cos v = 2$$

$$u\cos y + x^{2}v - yz^{2} = 1.$$

- a) Prove that this system of equations can be uniquely solved for (u, v) in terms of (x, y, z) in a neighborhood of (x, y, z, u, v) = (2, 0, 1, 1, 0).
- b) Determine $\frac{\partial u}{\partial z}(2,0,1)$ and $\frac{\partial v}{\partial z}(2,0,1)$.

Please, turn over

- 7. Find and classify the critical points of the function $f(x_1, x_2) = 2x_1^3 6x_1x_2 + 3x_2^2 + 37$.
- 8. Find the maximum and minimum of the function $f(x_1, x_2) = x_1^3 + 9x_1^2 + 6x_2^2$ subject to the constraint $x_1^2 + x_2^2 = 9$ using Lagrange multipliers.
- 9. a) Let $G = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y \le 4, x \ge 0, y \ge 0\}$. Calculate $\iint_G x e^{8y y^2} dA$.
 - b) Let $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \leq y^2 x^2 \leq 4, y \geq 2x, x \geq 0\}$. Use a change of variables to calculate

$$\iint_D \frac{x}{y} dA.$$

Scores:

1: a) 1 2: 3 3: a) 1 4: 3 5: 3 6: a) 1 7: 3 8: 5 9: a) 3 b) 2 b) 3 b) 3 b) 3 b) 3 b) 5
$$\frac{c) 1}{4}$$
 3 4 3 3 3 3 3 5 $\frac{4}{3}$ 6: a) 1 7: 3 8: 5 9: a) 3 b) 5 $\frac{5}{4}$ 6: a) 1 7: 3 8: 5 9: a) 3 b) 5 $\frac{5}{4}$