1L a) (0,0) € G and, therefore, is not interior. However, (0,0) € G’ since,
A for each r > 0 and xlzxgzmin{g,%}, (x1,m2) € G.
\
G \\ b) G is open. We show that each (z1,z2) € G is an interior point.
N Let (z1,x2) € G and let r = min {xl,xg, 1*“%77’”2} We show that
1 B((z1,22);7) C G. Let (y1,y2) € B((x1,22);7). Then,

y>zr—rz2x—x1=0
Yo > xo—1r >0 — T2 =0
ity <mtrt+aet+r=zi1+a2+2r<zitae+l-z—a2=1
and, thus, (y1,72) € G. This shows that B((z1,22);7) C G and, therefore, (x1,22) € GY.
c) A set is compact if it is closed and bounded. The smallest closed set containing G is
G =GUIG = {(r1,12) € R? | 21 > 0,22 > 0,21 + 29 < 1}. Moreover, G C B((0,0),1).
Therefore, GG is the smallest compact set containing G.

2. The function is not continuous at (0,0) since lim )f(xl, x9) # 0. To see this, let zo = Ax;

(1‘1,:)32)4)(0,0
with A € R. Then,

14+ X)ad + A\3zf Nz + 03 23
1 1 _ m _

li =1 = =
Jim, £ @, Azy) = lim 1+ AH)z? 0 1+ 1+ A\
since we get a different limit for each value of A, lim  f(x1,x2) does not exists. Therefore,

(z1,22)—+(0,0)
f is not continuous on R2.

a) We use the definition.

h203
f(h,00 = £0,00 . mre -0 0
= (0,0) = 1i =1 4 =1 — =0
fr(0,0) = lim, m R S g
and
£(0,hs) = £(0,0) iy 0 0
- . 0%th .
x l 2 ’ = l 2 e l — =0.
fo(0,0) = Jim =, M Ry Ay
b) Yes, it is. We show that
li f(hh h2) - f( ) f:c1(0 0) fm (O O)h . h%h% _
im = lim ———==0.
(h1,h2)—(0,0) \/h% + h% (h17h2)ﬂ(070) (h% + h%)i
Let € > 0 and 6 = v/e. Let (hy,hs) € R? with 0 < ||(h1,h2)|| < 6. Then,
l 3
h2h3 R2ho)® M ((’@2) _h(i hQ)%
7 = 7 < =h? < =e
(h2 +h2)? (W3 +h3)2 (M + h%)i (h2 + h2)?

This shows that the limit above converges to zero and, therefore, f is differentiable at (0, 0).



4. First, we calculate Tzl applying the chain rule. Since 1 = u%uz and x9 = uq + 2uo,

0z of 8x1+6f oz _, of  of
8u1 8901 8u1 8902 6’11,1 61‘1 61‘2 '

We now calculate au au applying the chain rule and the product rule when needed.

82f 8f 82f 8:61 82f 8:62 82f 8:61 82f 8:62
= 2uy = + 2uquy | —5 —— =)+ ke
6’11,26’11,1 8901 61‘% 6’11,2 61‘28.%’1 6’11,2 61‘18.%’2 6’11,2 61‘% 6’11,2
of 2P f o> f o OPf 0% f
= 2y, T (ula 2 2 0m ) T omons 2022
. . . . . 82 82
Since f has continuous second order partial derivatives, we have RN 3];32 = 2, 8];1 and
0% f af 0% f 0% f 0% f
=2u1— +2 4 —5.
Punoy =~ Mgy T 2 g T (e ) a4+ 25

5. Let h1 =T — 2 and h2 = Ty — 1. Then,

1 0 a\"
= f(2,1 — — 2,1).
o) = S0+ 3 (g + ey ) SC
Moreover,

f($1,$2)2(2+$1—2$2)_1 :>f(271):_
9 _ -2 of 1
6—1.1(1‘1,1‘2)——(2—1—.%'1—2.%'2) :>6—1‘1(271)__Z
0 9 of 1
e (561,562) = 2(2 +x1 — 2%2) = 8—562(2’ 1) = 5
0% f 0% f 1
Or 2(%1,:62)—2(2-1—:61—2:62) 3 ja—‘r%(Zl):Z

82f 3 0% f 1
—_— = —4(2 —2x9)” 2,1 —=
33;133@ (x1,22) (24 21 x2) = 632U18x2( ) 5
o°f o°f
9z 2(.%'1,1‘2) —8(2+1‘1 —21‘2) 3 = Oz %(2 1) 1.

Therefore,
of of >’f >’*f >’f
pa(w1,22) = f(2, 1)+h18 1(2 1)+h28 2(2 1)+ = h%a > (2, 1)+hlhg(9 e 2(2 1) + h§a >(2,1)
B h ha ~ h3?  hihy h3
T2 Ta1 Rty e

N~ N

xr1 — 2 To — 1 ($1 — 2)2 (Il — 2)($2 — 1) (IQ — 1)2
4 * 2 + 8 2 * 2 '



6. a) Let F(z,y,u,v) = (ve¥ + uz — cosv — 2,ucosy + v?v — yz? — 1). We want to know if the
equation
F(x,y,z,u,v) = (0,0)
has a solution for w and v as functions of z, y, and z in a neighborhood of (2,0,1,1,0). We
know that

e F' has continuous partial derivatives,
e [(2,0,1,1,0) =(24+1-1-2,14+40-0—-1) = (0,0).

oF  OFR :
odet(gﬁ2 é%%g) :det( © sm;;) :det<1 2)247'&0-
a0 /(20,110 COSY T /(2,0,1,1,0)

By the implicit function theorem, there is a neighborhood of (2,0,1,1,0) where v and v
can be given as functions of z, y, and z.

b) We have G(z,y, z) = F(z,y,z,u(x,y, 2),v(z,y,z)) = 0 for all (z,y, z) in a neighborhood of

(2,0,1). Thus,
0G1 ou . ov
0= g(x,y, z) = 5.7 +u+ sm(v)&
= — = — —_— 2
0 o (z,y, 2) 5, COSY +x 5, ¢
Therefore,

(2,0,1) +45£(2,0,1) =0 =0 92(2,0,1) = 1.

Sve

7. Critical points: V f(z1,z2) = (0,0) if

627 — 629 = 0 ' 22— 11 =0

_6$1+6$2:O '<:>x1:$2:001'$1:x2:1.

Tro9 = X1
Thus, we have two critical points: (0,0) and (1,1). To determine the nature of these points, we

need the Hessian matrix.
. 12:61 —6

e (0,0): H(0,0) = ( —06 _66 ) = A. We have det(A4;) = 0 and det(Az) = —36 < 0. Thus,

H(0,0) is indefinite and f has a saddle point at (0,0).

o (1,1): H(1,1) = < i26 _66 > = A. We have det(4;) = 12 > 0 and det(A2) = 36 > 0.

Thus, H(1,1)is positive definite and f has a minimum at (1,1).

8. Since our restriction describes the circle centered at (0,0) with radius 3, we know that the
function attains a maximum and a minimum under our constraint by the Extreme value theorem.



The Lagrange function is £(z1,z2,A) = 23 + 923 + 623 + \(2? + 2% —9). The optima are obtained
in the critical values of the Lagrange function. We get the system of equations

323 + 18x1 + 2\z1 =0 3x3wo + 18z 19 = —2\1179 323 + 18x1 + 2A\11 =0
1229 4+ 2Az9 =0 & 12z1290 = —2AT129 & 330%302 + 6z129 =0
23 +23=9 23 +23=9 3 +123=9
323 + 1871 + 2\z1 =0 z1 = 0,79 = £3, f(0,-3) = £(0,3) = 54,
& zi32(114+2) =0 & 19 =0,17 = £3, with  f(=3,0) =54, f(3,0) = 108,
2 22 =9 T =210 =45 f(=2,4/5) = f(—2,—/5) = 58.

Then, the maximum is 108 and attained at (3,0), and the minimum is 54 and attained at (—3,0),
(0,—3), and (0, 3).

a)

We integrate first with respect to x and, then, with respect to y. We have

’ G:{(.’Ii,y)ER2‘OS{I;S\/4_ 70§y§4}

Then,

1 [ -
// 2V dA = / / xe8y*y2dxdy= 5/ [x2]8/47y68y7y2dy
1 2 0
4
22
=2/ A=y =1 [y gy ray
0 0

= 1 [GSy—y2]4 - 1 (616 -1
0

.-lklf—‘

~—

4 4
b) 9 | D:{(x,y)ERQ\lng—xQSZl,OS%g2} We use the substitution
D u:yQ—xQ,v:%. Then,Duw:{(u,v R2]1<u<40<v<1}and
1 -

-2z 2 2 2
dudv = det( 130 ‘Z )‘dwdy:‘Q%—Q‘dxdy: (2—230—2) dxdy

s R y y

1

with 2 — #Ofor each (z1,72) € DY since 0 < £ <§1mphes§ 2—2“ < 2. Then,

v
dA = dudv = 3 dv
/Dy //1792—2” /0 / 2 — 202 /0 2 — 202

:——A wdv:%[m}%mﬂﬂ z<ln(2)ln<;>)z

4 2 — 202

O wl=

-(t)



