
Midterm exam Analysis II, 29-03-2019 Solutions

1. This is a nonlinear first-order differential equation, which can be solved using sepa-
ration of the variables. This yields (we use y = y(x)):∫

y dy =

∫
cosx dx =⇒ 1

2
y2 = sinx+ C, C ∈ R.

So the general solution is either

y(x) =
√

2 sinx+ 2C,C ∈ R

or
y(x) = −

√
2 sinx+ 2C,C ∈ R.

Substitution of the initial value shows that we need the +-sign and that

2 = y(π) =
√

2C, so C = 2.

So the solution of this initial value problem is y(x) =
√

2 sinx+ 4.

2. First solve the homogeneous equation. Substitution of y(x) = eλx gives the auxiliary
equation 4λ2+4λ+1 = (2λ+1)2 = 0, with only one solution λ = −1

2 . So the general
solution of the homogeneous equation is

y(x) = c1e
− 1

2
x + c2xe

− 1
2
x, c1, c2 ∈ R.

A particular solution will be of the form y(x) = Ax + B + Cex. Then we have
y′(x) = A + Cex and y′′(x) = Cex. Substitution in the nonhomogeneous equation
yields

Ax+ (4A+B) + 9Cex = x+ ex, so A = 1, B = −4 and C =
1

9
.

The general solution for this inhomogeneous differential equation is therefore:

y(x) = c1e
− 1

2
x + c2xe

− 1
2
x + x− 4 +

1

9
ex, c1, c2 ∈ R.

3. a) First consider
∞∑
n=1

∣∣∣∣ (−1)n

n+ lnn

∣∣∣∣ =

∞∑
n=1

1

n+ lnn
.

Since lim
n→∞

lnn
n = 0, we can compare the general term with 1

n . We find

lim
n→∞

1

n+ lnn
:

1

n
= lim

n→∞

1

1 + lnn
n

= 1,

and since
∞∑
n=1

1
n diverges (p-series with p = 1), the series

∞∑
n=1

1
n+lnn is also

divergent, according to the limit comparison test. So there is no absolute
convergence. Now apply the alternating series test: (i) the series is alternating,

(ii) the general term tends to 0 and (iii) the sequence
{

1
n+lnn

}
is decreasing.

So the series is convergent, but not absolutely convergent, so it is conditionally
convergent.
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b) Apply the ratio test and use the formula (n+ 1)! = (n+ 1)(n)!

lim
n→∞

e(n+1)2

(n+ 1)!
:
en

2

n!
= lim

n→∞

e2n+1

n+ 1
=∞ > 1

which means that the series is divergent.

4. a) The statement is false. Choose an = (−1)n
n . Then a2n = (−1)2n

2n = 1
2n . The

series
∞∑
n=1

an converges (alternating series test), while
∞∑
n=1

a2n diverges (p-series

with p = 1).

b) The statement is false. Choose bn = 1 − (−1)n, which means that {bn} =

{2, 0, 2, 0, 2, 0, . . .}. Clearly lim
n→∞

bn 6= 0, so
∞∑
n=1

bn diverges. However b2n = 0

for all n, so
∞∑
n=1

b2n converges.

5. a) First, we will prove that f(x) is the point wise limit. Choose an arbitrary
x0 ∈ [−a, a]. Then, we have

lim
n→∞

x20
n

= 0 = f(x0).

Now, we will prove uniform convergence. Let ε > 0 be given. Choose n∗ = a2

ε .
Then, for all n > n∗ we find that for each x ∈ [−a, a]:

|fn(x)− f(x)| =
∣∣∣∣x2n − 0

∣∣∣∣ ≤ a2

n
<
a2

n∗
= ε.

b) The point wise limit is still f(x) = 0, but the sequence is not uniformly con-
vergent on R. Choose ε = 1

2 and xn =
√
n. Then

|fn(xn)− f(xn)| =
∣∣∣∣(√n)2

n
− 0

∣∣∣∣ = 1 ≥ 1

2
,

so the sequence {fn(x)} does not converge uniformly on R.

6. a) Define fn(x) = xe−nx for all n ≥ 1. Then, f ′n(x) = (1− nx)e−nx. So f ′n(x) = 0
for x = 1

n and fn(x) are decreasing for x > 1
n . If n is large enough, a > 1

n ,
so for n large enough, fn(x) has its maximum value at x = a. Now, we apply
the Weierstrass M-test. On [a,∞), we have for large n that fn(x) = xe−nx ≤
ae−an = Mn and since

∞∑
n=0

ae−an = a

∞∑
n=0

(
e−a
)n

=
a

1− e−a
(is convergent)

the Weierstrass M-test concludes that
∞∑
n=0

xe−nx is uniform convergent on [a,∞).
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b) Let f(x) =
∞∑
n=0

xe−nx. Then f(0) = 0, while for x > 0 we have

f(x) =

∞∑
n=0

xe−nx =

∞∑
n=0

x
(
e−x
)n

=
x

1− e−x
.

Since fn(x) = xe−nx is continuous on [0,∞) for all n, we should find a conti-
nuous sum function f(x) on [0,∞) in case of uniform convergence. However,

lim
x→0+

f(x) = lim
x→0+

x

1− e−x
= 1 6= 0 = f(0) (use l’Hospital),

so this series is not uniform convergent on [0,∞).

7. a) Suppose an =
(2x− 1)3n

n 8n
and apply the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
|2x− 1|3

8
lim
n→∞

n

n+ 1
=
|2x− 1|3

8
.

If |2x−1|
3

8 < 1, so if −1
2 < x < 3

2 , the series converges absolutely. If |2x−1|
3

8 > 1,
so if x < −1

2 or x > 3
2 , the series diverges. Now consider the endpoints x = −1

2
and x = 3

2 separately:

x = 3
2 gives

∞∑
n=1

1
n , so divergent (p-series with p = 1).

x = −1
2 gives

∞∑
n=1

(−1)n
n , so a convergent series, according to the alternating

series test.
The interval of convergence therefore is [−1

2 ,
3
2).

b) Let

f(x) =
∞∑
n=1

(2x− 1)3n

n 8n
.

In part a) we have proven that the interval of convergence is [−1
2 ,

3
2). Then,

f is differentiable on (−1
2 ,

3
2) and its derivative can be found by differentiating

term by term:

f ′(x) =
∞∑
n=1

6n(2x− 1)3n−1

n 8n
=
∞∑
n=1

6(2x− 1)3n−1

8n
.

Now substitute x = 0 to obtain:

f ′(0) =

∞∑
n=1

6(−1)3n−1

8n
=

∞∑
n=1

−6

(
−1

8

)n
= −6× −1/8

1− (−1/8)
=

6

9
=

2

3
.

8. To simplify the calculations, we substitute t = x+ 1 and find a series representation
of 5

2−3(t−1) = 5
5−3t in powers of t (using the geometric series):

5

5− 3t
=

1

1− 3t/5
=

∞∑
n=0

(
3

5
t

)n
,
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which converges for |35 t| < 1, so for |t| < 5
3 . Now replace t by x+ 1 to get the desired

result
5

2− 3x
=

∞∑
n=0

(
3

5

)n
(x+ 1)n,

which converges for |x+ 1| < 5
3 , so for −8

3 < x < 2
3 .

9. We start with the well known Maclaurin series for et:

et =
∞∑
n=0

tn

n!
, for all t ∈ R, which leads to

t2e5t
2

= t2
∞∑
n=0

(5t2)n

n!
=
∞∑
n=0

5nt2n+2

n!
.

This power series converges uniformly to t2e5t
2

on any bounded subset of R. So we
can interchange series and integral to obtain

K(x) =

∫ x

0
t2e5t

2
dt =

∫ x

0

∞∑
n=0

5nt2n+2

n!
dt =

∞∑
n=0

5n

n!

∫ x

0
t2n+2 dt =

=
∞∑
n=0

5n

n!

t2n+3

2n+ 3

∣∣∣x
0

=
∞∑
n=0

5n

n!

x2n+3

2n+ 3
,

which is convergent to K(x) for all x ∈ R.
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