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Exercise 1 [40 Credits]

Consider a stochastic process {X(t),t > 0} given by its differential equation

dX (1) = rX ()dt + o\/X (1) dW (1), (1)

where r,b,0 > 0 are positive parameters, and where {W (t),t > 0} is the standard
Wiener process. Let T' > 0 be some finite horizon, and suppose that we are interested
in the quantity

V=E [e—’“T max (X (T) — Y, 0)].

for some random variable Y independent from everything else. Assume that Y has
cumulative distribution funtion F(y),y € R.

(a). [10 Credits] Write down the Euler scheme of the stochastic differential equation
(1) using constant small time increments h > 0. Then, give the algorithm of
simulating a single (approximated) sample path {X;,0 < t < T'} using your
Euler scheme. Given this sample path, how do you compute e~"7 max (X (T) —
Y,0)?

(b). [10 Credits] Give the expression of the sample average estimator of V' using
sample size n. How do you estimate the standard error of this estimator?

(c). [10 Credits] Now write down the complete Monte Carlo simulation algorithm
for estimating V', including reporting standard error and 95% confidence inter-
val.

(d). [5 Credits] Which properties do you have to check before you can "trust” the
confidence interval obtained in (c)?



(e).

[5 Credits] How would you verify your computer program (i.e, check that your
code is correct)?

Abbreviated solution.

(a).

Replacing dt by h, we arrive at
X({t+h)—X(@t)=rX({t)h+oV/hX(t)Z

with Z standard normal. Hence, given X (¢) and an independent sample of Z
we arrive at

X({t+h)=(r+1)X({t)h+o/hX(t)Z.

. DIY

DIY

Make a histogram of your estimator and check for asymptotic normality.

. Run your program for instances of the model you know the answer of. Also

print a trace and make a step by step check of the program.

Exercise 2 [20 Credits]

(a).

[10 Credits] Consider the adjacency matrix

01000
1 0001
A=]10 00 1 0
00011
10100

Consider the graph associated with the above adjacency matrix. Give the max-
imally strongly connected sub-graphs of this graph.

. [10 Credits] Given is a strongly connected graph with N nodes, where each

node has a self-loop. Consider a multi-agent system on this graph. Each agent
updates her beliefs according to a Poisson-A-clock, with A = 1. When agent ¢
updates her belief at time ¢, she follows the minimal belief of her neighbors, i.e.,

her new belief is
¢i(tT) = min{c;(t7) : (i,4) € V}.

What is the the limiting belief vector of the agents?



Solution (a) The graph has two maximally strongly connected sub-graphs: the
cyle (1,2), (2,1), and the cycle (5,4),(4,3),(3,5)

(b) As each agent has a self-loop, she will only minimize her belief. As the network
is strongly connected, an agent will eventually reach the minimal value of ¢ as belief.
The limiting belief of each agent is min{c; : 1 < j < N}.

Exercise 3 [40 Credits]

Starcity is a small amusement park with three rides (attractions): 1 = Froghopper,
2 = Startower, and 3 = Rollercoaster. On a typical day during high season, people
arrive at the park in groups of size k with probability a; for k = 2,3,...,6 (ay >
0, 22:2 ar = 1). The groups arrive according to a Poisson process with parameter
A. From each group one person takes care of paying the entrance fee at the ticket
office which consists of two windows. These persons queue up in two seperate lines
(one for each window), where a newly arriving person chooses the shortest queue
(and arbitrary one when both queues have the same length). Handling the payments
and getting some information about the park take together a random time X, with
distribution function Fy(-) and expectation 1/u. After entering the park each member
of the group acts individually, independent from what the others of his group are
going to do. Each person will visit only one attraction which he chooses according
to the probabilities py, p2, ps (p; > 0, 25:1 p; = 1). Then he walks to his chosen
attraction which takes a random time X; with distribution function Fj(-) (in case
of the j-th attraction, where j = 1,2,3). At the scene of the attraction he joins the
queue (when there is one) and waits for his ride. Attraction j (j = 1,2, 3) operates
as follows:

e it can accomodate at most ¢; people per ride;
e a ride takes a random time Y; with distribution function G;(-);

e anew ride starts whenever there are at least m; people waiting for a ride, where
m; < Cj;

e for simplicity assume that loading and unloading take no time.

Finally, walking back from the attraction to the exit takes a random time Z; with
distribution function H;(-) (j = 1,2,3). All the random variables involved in the
model are independent of each other.

The first visitors to the park arrive already from 7.30 hrs onwards, although the park
opens its ticket office and its entrance gates at 8.00 hrs. Most probably, by this time
there will be already two lines in front of the ticket office. Closing time is at 19.00
hrs, meaning that no new arrivals are admitted from then on. The people in the



park will always get their ride. Possibly, the last ride at attraction j is with less than
m; people (j =1,2,3).

The management of Starcity receives many complaints of long waiting lines in front
of the attractions, and foresees that the popularity of the park will decline. In order
to improve the logistics in the park, the management sets up a simulation study from
which such performance measures are estimated. Having the simulation model, it is
then possible to consider several solutions of making the waiting lines smaller.

The performance measures include
e wy: expected average waiting time at the ticket office per person (per day);

e /;: expected average waiting line length at attraction j per unit time (per day),
J=123;

e r;: expected fraction of time (per day) that a ride at attraction j is going on,
j=1,2,3.

(a). [10 Credits] In a mathematical model of Starcity, which random variables do
you need to define to get an estimator of the performance measure wy? How do
you get an estimate and a confidence interval of the estimate?

(b). [10 Credits| Suppose that you construct a discrete-event simulation model
(DES) for estimating the performance measures. Specify the event list and the
system state of your DES that enable you to observe the system dynamically
in time, and define the counter (or statistical) variables to be used for calculat-
ing daily observations of the variables whose expectations are the performance
measures.

(c). [10 Credits] The (pseudo-)code of simulating a single day looks like



t = 0;
initialize;

while t<30
[t,event] = schedule_next_event;
if event = arrival_at_park : 777;
end;

while t<690
[t,event] = schedule_next_event;
if event = arrival_at_park : 777;
if event = ticket_window_departure : 777;
if event = 777,

end;

while park_not_empty
[t,event] = schedule_next_event;

collect_statistics;

Time is measured in minutes and ¢ represents the current simulation clock time.
Complete this code with the other events that you defined in (b). Give the
details of how you need to update state, event list and counter variables in at
least two of the procedures in this pseudo-code listed after if event = .

(d). [5 Credits] How would you verify your program?
(e). [5 Credits| Can you suggest solutions to the management that will (probably)

make the waiting lines smaller?

Solution.

(a). For the expected average waiting time at the ticket office per person per day,
we define the random variables

N = the number of groups arriving during a day;
W) = the time spent in the queue at the ticket office by the person
of group k who is in charge for the payments, k =1,... N.



The average waiting time a random day is

The performance measure of interest is

wo = E[Y] :E[%im]‘

We obtain an estimate wgy by simulating independently n days, say ¢ = 1,...,n.
The i-th day has N @) groups arriving, from which the paying person of group
k spends Wk(z) in the queue, k = 1,..., N The average waiting time spent on
the i-th day is

1 NG
Y;ﬁN(i)ZWk(’), i=1,...,n.
k=1

These averages Y7, ...,Y, are i.i.d. as Y. Thus, an unbiased estimator of wy is

— 1<

and any observation of Y, from a simulation experiment may be considered
to be an estimate wy. For constructing a confidence interval of an estimate,
consider the standard error of estimator Y,,:

SE =1/Var(Y,) = v/Var(Y)/n.

An unbiased estimator of Var(Y') is the sample variance:

5 = ni1Z(Yi‘7n)2'
=1

Our simulation produces a realisation s of S2. Hence, SE = 1/s2/n is an
estimate of the standard error. A 100(1 — )% confidence interval is

(@B —ln-1,1-a/2 SE, Wy + ln11-a/2 §E)7

where t,,_1, is the p-th quantile of the Student ¢-distribution with n — 1 degree
of freedom.



(b).

e System state (at time ) is a data sructure with information on

(i) the number of persons queueing at the ticket office in line 1, the arrival
times of the group they belong to, and the group size;

(ii) idem line 2;

(iii) the status of the two ticket windows (busy or idle);

(iv) the number of persons walking from the entrance to attraction 1, to
attraction 2, and to attraction 3;

(v) the number of persons queueing at attraction 1, and their arrival times
at the attraction;

(vi) idem attraction 2, and attraction 3;

(vii) the status of the three attractions (riding or waiting);

(viii) when an attraction rides, its occupation;

(ix) the number of persons walking from attraction 1 to the exit, from at-
traction 2, and from attraction 3;

Events deal with occurences that change the system state:
(i) a group arriving at the park;

(i) a person completing the payments;

(iii) a person arriving at attraction 1;
(iv) a person arriving at attraction 2;
(v) a person arriving at attraction 3;
(vi) end of a ride of attraction 1;
(vii) end of a ride of attraction 2;

(
(
(
(

ix) a person leaving the park from attraction 1;
X) a person leaving the park from attraction 2;
xi) a person leaving the park from attraction 3.

Event list at time ¢ is a data structure consisting of clock times that show
for all events when they are scheduled to occur. In order of the events, and
suppose that the current time is ¢ =9:20:37 hr (20 minutes and 37 seconds
after 9 o’clock).

(i) There is a single clock for event (i), for instance it says 9:22:18 hr.
This means, the first group to arrive at the park after time ¢ =9:20:37 is
scheduled at 9:22:18.

(ii) Any busy server at the ticket window has a clock ticking until payments
are completed. For instance, both are busy, and the clocks could be 9:23:29,
9:24:06.

(iii) Any person walking from the ticket office to attraction 1 at time ¢ (it
is known how many because of state component(iv)) has a clock that says
when he will arrive at attraction 1. All the clock times are keeping track



of (chronologically). For instance, suppose there are 4 persons, then the
clocks might be 9:24:19, 9:28:38, 9:29:02, 9:33:51 hr.

(iv) idem for person heading to attraction 2;

(v) idem for person heading to attraction 3;

(vi) There is a single clock for event (vi), for instance it says co. This
means that, actually, attraction 1 is waiting for enough persons for the
next ride;

(vii) idem for the ride of attraction 2; the clock time might be 9:30:49
meaning that the ride is in progress and will finish at 9:30:49;

(viii) idem for the ride of attraction 3;

(ix) Any person walking from attraction 1 to the exit at time ¢ (it is known
how many because of state component(ix)) has a clock that says when
he will arrive at the exit gate. All the clock times are keeping track of
(chronologically). For instance, suppose there are 2 persons, then the clocks
might be 9:25:38, 9:30:27 hr.

(x) idem from attraction 2;

(xi) idem from attraction 3.

Counter variables are statistics that are being recorded during a simulation
run; their values at the end of the run are used to compute performance
measures.

(i) Waiting time at the ticket office: you need a variable, say W, that
accumulates the waiting times of all the persons that queued in line 1 (in
front of ticket window 1); similarly a variable Wy accumulating the waiting
times in line 2; and a variable N that keeps track of the number of arriving
groups at the park that were permitted to enter. At the end of the run,
(W1 + W) /N is the average waiting time at the ticket office.

(iii) Average queue length at attraction 1: consider all event times of a
simulation run, chronologically, 0 = Ty < T} < --- < Ty_, with N, the
number of events that occurs during a simulation day. Let M; be the
number of persons queueing at time 7+ (just after the event time). Then,
at the end of the day the average queue length is computed by

1 &
72 (T = Tra) M.

Ne 5=

(iv) Similarly for the other attractions.

(v) fraction of time that ride 1 is in progress: now multiply the inter-event
times T — T;_; with the binary variable B;_; which is 1 when the ride is



().

in progress at event time 7;_;, and otherwise 0. Then

1 &
T > (T = Tjm1) B,
7=1

Ne o
is the fraction of time that attraction 1 is in progress. (vi) Similarly for
the other attractions.

The first 7?77 deals with the event of an arrival at the park between 7:30 and
8:00 hr, when the park is not yet open. There is only queueing. Note that ¢ is
the event time. The program would handle the following actions.

(i) Simulate the group size from the (a;) probabilities, say K.

(ii) Check the queue lengths Ny, Ny in front of the two ticket windows, and
choose the shortest, say N;. Then increase N; by 1.

(iii) Add the person at the end of the queue with information on arrival time ¢,
and group size K.

(iv) Simulate from the exponential distribution the time until the next arrival,
say A. Then the event list becomes just the single clock t + A.

The second 777 deals with the event of an arrival at the park after 8:00 hr. Note
that ¢ is the event time. Let {yevious be the previous event time. The actions
are.

(i) Update all the counter variables for performance measures ¢; (queue length at
attraction j, j = 1,2, 3), and r; (fraction of time ride j is in progress, j = 1, 2, 3).
See (b).

(i) Simulate the group size from the (ax) probabilities, say K.

(iii) Check whether a ticket window is free, say window 1 is free. This server
becomes busy. Simulate a handling time X from distribution function Fjy, and
add time t + X on the event list. (iv) If both ticket windows are busy, then
check the queue lengths Ny, Ny in front of the two ticket windows, and choose
the shortest, say N;. Then increase N; by 1, and add the person at the end of
the queue with information on arrival time ¢, and group size K.

(iv) Simulate from the exponential distribution the time until the next arrival,
say A. Add time t + A on the event list.

. Verification is the process of checking that the computer program is a correct

implementation of the mathematical model. Several techniques could be applied.

e Check whether the random variables Xg, X, X5, X3,Y1,Y5, Y3, 21, 725, Z3
are correctly simulated.

e Print a trace.



e Compute the fraction of persons that enter attraction 1 in your simulations.
It should be (close to) p;. Similarly for the fractions entering the other
attractions.

e Set group size K = 1 (fixed, deterministic), and give the handling time
X of the ticket office an exponential distribution. Then the ticket office
is a Poisson-exponential join-the-shortest-queue model for which you can
determine exact (numerically) expressions of queue lengths.

e Set capacity of attraction 1 to ¢; = 1. Then attraction 1 becomes a single
server queue.



