
Exam Advanced Machine Learning
27 October 2022, 18.45–21.00

This exam consists of 5 problems, each consisting of several questions. All answers should
be motivated, including calculations, formulas used, etc. The use of a calculator is not
allowed.

Question 1: Short questions
Please provide an argument for your answer on the following questions.

(a) Suppose that you use linear regression to model a particular dataset. To test your
linear regression model, you choose at random some records to be the training set,
and choose at random some of the remaining records to be the test set. Now, let us
increase the size of the training set gradually. Explain what will happen to the mean
training error and the mean testing error.

The training error tends to increase. As more examples have to be fitted, it becomes
harder to ’hit’, or even come close, to all of them. The test error tends to decrease.
As we take into account more examples when training, we have more information,
and can come up with a model that better resembles the true behavior. More training
examples lead to better generalization.

(b) Jason and Bob are discussing which structural assumptions in polynomial regression
most affect the trade-off between underfitting and overfitting. Jason claims that the
polynomial degree in the regression is more important for the trade-off, whereas Bob
claims that the assumed variance in the Normal distribution of the error is more im-
portant. Who is right, and why?

Jason is right.

(c) Suppose that you are given a train set Xtrain, Ytrain and a test set Xtest, Ytest. You want
to normalize your data before training your model. Argue if the following statement
is true or false. The test data should be normalized with its own mean and variance
before being fed to the network at test time because the test distribution might be
different from the train distribution.

The statement is FALSE.

(d) You are doing full batch gradient descent using the entire training set (not stochastic
gradient descent). Is it necessary to shuffle the training data? Explain your answer.

It is not necessary. Each iteration of full batch gradient descent runs through the entire
dataset and, therefore, the order of the dataset does not matter.

(e) Weight sharing allows convolutional neural networks to deal with image data without
using too many parameters. Does weight sharing increase the bias or the variance of
a model?

Weight sharing increases the bias.
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(f) Consider the figure below.

The input is of shape (nH , nW , nC) = (10, 10, 1). There are five 4 × 4 convolutional
filters with ‘valid’ padding (i.e., zero padding) and a stride of (2, 2). What is the out-
put shape after performing the convolution step? Write your answer in the following
format: (nH , nW , nc).

(nH , nW , nc) = (4, 4, 5).

(g) You are consulting for a healthcare company. A patient may have any number of ill-
nesses from a list of 70,000 known medical illnesses. The output of your recurrent
neural network will therefore be a vector with 70,000 elements. Each element in this
output vector represents the probability that the patient has the illness that maps to
that particular element. Illnesses are not mutually exclusive, i.e., having one illness
does not preclude you from having any other illnesses. Given this insight, what acti-
vation function would you use for your output unit? Explain your answer.

Sigmoid. In the softmax case, the presence of one disease would lower the proba-
bility of all other diseases. This contradicts our assumption that the diseases are not
mutually exclusive.

Question 2: Neural networks
The following neural network in Figure 1 has 3 units. The neural network operates as a
regular neural network. Each unit takes a linear combination of the units of the previous
layer, adds a bias term, and then applies an activation function g to obtain the activated
units (i.e., a1, a2, or a3). Additionally, this network uses the standard error function E =
1
2 (y − t)2, with t the target value and y = a3, the output of the neural network.

(a) We discussed several activation functions during the lecture. We did not discuss the
Exponential Linear Unit (ELU) g1 and the SoftPlus g2 activation functions. These
activation functions are given by

g1(z) =

{
α(ez − 1), for z < 0,

z, for z ≥ 0,
and g2(z) = loge(1 + ez),

for some α ∈ R. Calculate the derivative of gi(z) with respect to z for both i = 1, 2.

g′1(z) =

{
α(ez − 1) + α = g1(z) + α, for z < 0,

1, for z ≥ 0,
and g2(z) =

1

1 + e−z
.
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Figure 1: Neural network architecture.

(b) Discuss the advantages and disadvantages of the ELU and SoftPlus activation func-
tions over the sigmoid, tanh, and ReLu activation functions.

Continuous activation function with non-zero derivatives.

Assume that node a1 and node a2 are activated by g1 and node a3 is activated by g2.

(c) Calculate ∂E/∂w13.

∂E

∂w13
=

∂E

∂a3

∂a3
∂z3

∂z3
∂w13

= (a3 − t) · g′2(z3) · a1.

(d) Calculate ∂E/∂w11.

∂E

∂w11
=

∂E

∂a3

∂a3
∂z3

[
∂z3
∂a1

∂a1
∂z1

∂z1
∂w11

+
∂z3
∂a2

∂a2
∂z2

∂z2
∂w11

]
=

∂E

∂a3

∂a3
∂z3

∂z3
∂a1

∂a1
∂z1

∂z1
∂w11

∂E

∂w11
= (a3 − t) · g′2(z3) · w13 · g′1(z1) · x1.

(e) We have discussed the linear activation function during the lecture. This was given
by z = w0 +

∑
i wixi. Now, consider the hard threshold

z =

{
1, if w0 +

∑
i wixi ≥ 0,

0, otherwise.

Which of the following functions can be exactly represented by a neural network with
one hidden layer which uses linear and/or hard threshold activation functions? For
each case, justify your answer.

(i) polynomials of degree one
Yes

(ii) hinge loss, i.e., h(x) = max{1− x, 0}
No
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(iii) polynomials of degree two
No

(iv) piecewise constant functions
Yes

Question 3: Graphical models
The following figure shows a graphical model over nine binary-valued variables A, . . . , I .
We do not know the parameters of the probability distribution associated with the graph.

Figure 2: Graphical model.

(a) Write the expression for the joint probability P(A,B,C,D,E, F,G,H, I) of the net-
work in its reduced factored form.

P(A)P(B)P(C|A,B)P(D|C)P(E|B)P(F |E)P(G|D,F )P(H|F )P(I|H)

(b) Which of the following conditional independence assertions are true?

(i) A ⊥⊥ B |G
False

(ii) A ⊥⊥ I

True
(iii) B ⊥⊥ H |E,G

False
(iv) P(C |B,F ) = P(C |F )

False

Question 4: Hidden Markov Models (HMMs)
Consider an HMM with latent states Zt ∈ {1, 2, 3}, and observations Xt ∈ {A,B,C}. The
initial distribution is given by π = (π1, π2, π3) = (1, 0, 0). The transition probabilities of the
latent states and the emission probabilities are given by

A =

1/2 1/4 1/4
0 1/2 1/2
0 0 1

 , and φ =

1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

 .

Thus, e.g., P(Zt = 2 |Zt−1 = 1) = 1/4 and P(Zt = 2 |Zt−1 = 2) = 1/2. Similarly, states
A and B are observed with probability 1/2 in latent state 1, A and C in latent state 2, and
states B and C in latent state 3.
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(a) Calculate the probability P(Z5 = 3).

1−P(Z5 = 1)−P(Z5 = 2) = 1− 1/16− 4× 1/32 = 13/16

(b) Calculate the probability P(Z5 = 3 | (X1, . . . , X7) = (A,A,B,C,A,B,C)).

0

(c) Write down the sequence Z1, . . . , Z7 that maximizes the probability of observing the
sequence (X1, . . . , X7) = (A,A,B,C,A,B,C).

(1, 1, 1, 2, 2, 3, 3) with posterior probability 1

(d) Suppose that you are training an HMM with a small number of latent states from a
large number of observations. Explain if, in general, you can increase the training
data likelihood by permitting more latent states.

To model any finite length sequence, we can increase the number of hidden states in
an HMM to be the number of observations in the sequence and therefore (with appro-
priate parameter choices) generate the observed sequence with probability 1. Given a
fixed number of finite sequences (say n), we would still be able to assign probability
1/n for generating each sequence. This is not useful, of course, but highlights the fact
that the complexity of HMMs is not limited.

Question 5: Machine learning for blackjack
Armed with the power of Q-learning, you go to Holland Casino. You play a simplified
version of blackjack where the deck is infinite and the dealer always has a fixed count of
15. The deck contains cards 2 through 10, J , Q, K, and A, each of which is equally likely to
appear when a card is drawn. Each number card is worth the number of points shown on
it, the cards J , Q, and K are worth 10 points, and A is worth 11.

At each turn, you may either hit or stay. If you choose to hit, you receive no immediate
reward and are dealt an additional card. If you stay, you receive a reward of 0 if your
current point total is exactly 15, +10 if it is higher than 15 but not higher than 21, and −10
otherwise (i.e., lower than 15 or larger than 21). After taking the stay action, the game enters
a terminal state end and ends. A total of 22 or higher is refered to as a bust; from a bust, you
can only choose the action stay.

As your state space, you take the set {0, 2, . . . , 21, bust, end} indicating point totals,
“bust” if your point total exceeds 21, and “end” for the end of the game.

(a) Suppose you have performed k iterations of value iteration. Compute Vk+1(12) given
the partial table below for Vk(s). Give your answer in terms of the discount γ as a
variable. Note: do not worry about whether the listed Vk values could actually result
from this MDP!

Vk+1(12) = 1/13 × (8 × 10γ + 5 × (−10)γ) = 30/13γ. There are 8 cards (2 through 9)
that will take us to a state with return 10, and 5 cards (10 through Ace) that will take
us to the bust state.

(b) You suspect that the cards do not actually appear with equal probability and decide
to use Q-learning instead of value iteration. Given the partial table of initial Q-values
below, update the partial table of Q-values after the following episode occurred. As-
sume a learning rate of 0.5 and a discount factor of γ = 1. The initial portion of the
episode has been omitted.

How are the values updated? Here’s a sample one: Q(19, hit) = 0.5×−2+ 0.5× (0 +
1×max(−6, 8)) = 3.
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s Vk(s)
13 2
14 10
15 10
16 10
17 10
18 10
19 10
20 10
21 10

bust −10
end 0

s a Q(s, a)
19 hit −2
19 stay 5
20 hit −4
20 stay 7
21 hit −6
21 stay 8

bust stay −8

Episode
s a r s a r s a r

19 hit 0 21 hit 0 bust stay −10

s a Q(s, a)
19 hit 3
19 stay
20 hit
20 stay
21 hit −7
21 stay

bust stay −9

(c) Unhappy with your experience with basic Q-learning, you decide to featurize your Q-
values, representing them in the form

∑
i wifi(s, a) for some feature functions fi(s, a).

Consider the two feature functions

f1(s, a) =


0, if a = stay,
+1, if a = hit and s ≥ 15,

−1, if a = hit and s < 15.

and f2(s, a) =


0, if a = stay,
+1, if a = hit and s ≥ 18,

−1, if a = hit and s < 18.

For which of the following partial policy tables (i)–(v) is it possible to represent Q-
values in the form w1f1(s, a) + w2f2(s, a) that imply that policy unambiguously (i.e.,
without having to break ties)?

Table (iii).
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(i)
s π(s)

14 hit
15 hit
16 hit
17 hit
18 hit
19 hit

(ii)
s π(s)

14 stay
15 hit
16 hit
17 hit
18 stay
19 stay

(iii)
s π(s)

14 hit
15 hit
16 hit
17 hit
18 stay
19 stay

(iv)
s π(s)

14 hit
15 hit
16 hit
17 hit
18 hit
19 stay

(v)
s π(s)

14 hit
15 hit
16 hit
17 stay
18 hit
19 stay

partial grade 1 2 3 4 5
(a) 1 2 1 2 1
(b) 1 2 4 2 2
(c) 1 2 2 3
(d) 1 2 1
(e) 1 3
(f) 1
(g) 1

Final grade is: (sum of partial grades) / 4.0 + 1.0
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