
Exam Advanced Machine Learning
11 January 2022, 18.45–21.00

This exam consists of 5 problems, each consisting of several questions. All answers should
be motivated, including calculations, formulas used, etc. The use of a calculator is not
allowed.

Question 1: Short questions
Please provide an argument for your answer on the following questions.

(a) The figure below shows the number of stochastic gradient descent (SGD) iterations
required to reach a given loss, as a function of the batch size.

For small batch sizes, the number of iterations required to reach the target loss de-
creases as the batch size increases. Explain this behavior.

(b) You are training a machine learning model with batch gradient descent. Suppose that
your training loss increases with the number of iterations. What could be a possible
issue with the learning process?

(c) You are training a logistic regression model. You initialize half of the parameters with
0.5, and the other half of the parameters with −0.5. Does this cause any problems?
Explain your answer.

(d) You are solving a binary classification task of classifying images as cat versus non-
cat. You design a convolutional neural network with a single output neuron. Let
the output of this neuron be z. The final output y of your network is given by y =
σ(ReLU(z)), with σ the sigmoid function. You classify all inputs with final value
y ≥ 0.5 as cat images. What problem are you going to encounter?

(e) In convolutional neural networks, we use weight sharing to deal with image data
without using too many parameters. Please explain the effect of weight sharing on
the bias and the variance of the model.

(f) We have learned that dense word vectors learned through word2vec or GloVe have
many advantages over using sparse one-hot word vectors. Explain if the following
statement is an advantage or not. Models using dense word vectors generalize better
to rare words than those using sparse vectors.
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Question 2: Neural networks
Suppose that you are building a neural network for multi-class classification. The first layer
takes the input values x1, . . . , xn. The second layer transforms the inputs to M hidden
units, where unit j is given by zj =

∑n
i=1 wjixi + bj , where wji and bj are the weights and

bias terms, respectively. The activation function that is used to generate M outputs is the
softmax function, i.e., for output k we have yk = exp(zk)/

∑M
j=1 exp(zj).

(a) Calculate ∂yk/∂zj .

(b) Calculate ∂yk/∂wji.

(c) The softmax function suffers from numerical instability. One trick may be used when
implementing the softmax function. Let g = maxMj=1 zj . Then

ŷk =
exp(zk − g)∑M
j=1 exp(zj − g)

resolves the problem. State what the numerical problem with the initial softmax com-
putation is, and why the modified formula would help resolving that problem.

(d) Recall the ReLU(x) = max{x, 0} activation function. Consider an alternative to the
ReLU function called the Exponential Linear Unit (ELU) given by

ELU(x) =

{
x, x ≥ 0,

α(ex − 1), x < 0.

Name one major advantage of using ELU over ReLU.

Question 3: Graphical models
The following figure shows a graphical model over six binary-valued variables A, . . . , F .
We do not know the parameters of the probability distribution associated with the graph.

(a) Write the expression for the joint probability P(A,B,C,D,E, F ) of the network in its
reduced factored form.

(b) Which of the following conditional independence assertions are true?
i) A ⊥⊥ F |D
ii) C ⊥⊥ D |E

iii) A ⊥⊥ E

(c) For this network, we want the following relations to hold:
i) A ⊥⊥ D |B
ii) A ⊥⊥ F |C

iii) C ⊥⊥ D |B
What is the minimum set of edges that must be removed such that the relations hold
simultaneously. Explicitly state the edges that need to be removed.
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Question 4: Hidden Markov Models (HMMs)
Imagine you have a smart house that wants to track your location within itself so it can turn
on the lights in the room you are in and make your food in your kitchen. Your house has 4
rooms (A, B, C, D) in the floor plan below (A is connected to B and D, B is connected to A
and C, C is connected to B and D, and D is connected to A and C).

At the beginning of the day (t = 0), your probabilities of being in each room are pA, pB , pC ,
and pD for rooms A, B, C, and D, respectively. At each time t, your position (following a
Markovian process) is given by Xt. At each time, your probability of staying in the same
room is q0, your probability of moving clockwise to the next room is q1, and your probability
of moving counterclockwise to the next room is q−1 = 1− q0 − q1.

(a) Initially, assume your house has no way of sensing where you are. What is the prob-
ability that you will be in room D at time t = 1?

Now assume that your house contains a sensor MA that detects motion (MA = 1) or no
motion (MA = 0) in room A. This sensor has probability 1− 2γ for detecting motion if you
are in room A, for γ small. The sensor is a bit noisy and can be tricked in adjacent rooms
with probability γ, resulting in the conditional distributions for the sensor given as follows.

P(MA = 1 |X = A) = 1− 2γ = 1−P(MA = 0 |X = A),

P(MA = 1 |X = B) = γ = 1−P(MA = 0 |X = B),

P(MA = 1 |X = C) = 0 = 1−P(MA = 0 |X = C),

P(MA = 1 |X = D) = γ = 1−P(MA = 0 |X = D)

(b) Model this process as a Hidden Markov Model, where the observations are the sensor
readings and the latent variables are the locations. Specify all the parameters (π,A, ϕ).

(c) Suppose that you start in room A with q0 = 0 and q1 = 1/2 = q−1. Explain which ob-
servation is the most likely observation: (1, 0, 0), (1, 1, 0), or (1, 1, 1), where the num-
bers represent the readings of MA at t = 0, 1, and 2, respectively.

Question 5: Optimization in machine learning
You are given a training set {(ti,xi)}i=1,...,N with N data points. You decide to use a ma-
chine learning algorithm with weights w that transforms an input x to an output t. You
suppose that the relationship is given by t = y(x,w) + ε, with ε having a Gaussian dis-
tribution with variance σ2. More specifically, P(ε |σ2) = N (ε | 0, σ2) with N (x |µ, σ2) =
(2πσ2)−1/2 exp{−(x− µ)2/(2σ2)}.

(a) Write down the likelihood function P(t |X,w, σ2) using all data.

(b) Show that the log likelihood function is given by

−N ln(σ2)

2
− N ln(2π)

2
−

∑N
i=1(ti − y(xi,w))2

2σ2
.

(c) Show that maximizing the log likelihood function is equivalent to minimizing the root
of the mean-squared error.
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partial grade 1 2 3 4 5
(a) 1 2 1 1 1
(b) 1 1 2 3 2
(c) 1 1 2 2 1
(d) 1 2
(e) 1
(f) 1

Final grade is: (sum of partial grades) / 3.0 + 1.0
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