
Exam Advanced Machine Learning
22 October 2020, 15.30–18.15

This exam consists of 6 problems, each consisting of several questions. All answers should
be motivated, including calculations, formulas used, etc. The use of a calculator is not
allowed.

Question 1: Short questions
Please provide an argument for your answer on the following questions.

(a) Is the following statement true of false? Stochastic gradient descent, even with small
step size, sometimes increases the loss in some iteration for convex problems.

SGD due to stochasticity does not necessarily decrease the loss in each iteration. One
can construct case where there could be a data point which is sort of contradicting
with all others, so optimizing this particular data point may increase the overall loss.

(b) You observe the following train and test error as a function of model complexity p for
three different models. Consider the minimum possible bias for each model over all
settings of p for 0 ≤ p ≤ 30. Compare the minimum bias of the three models (i.e., are
they the same, which one has the highest, which one has the lowest)?

Figure 1: Train and test error.

The train error is a good indicator of the bias. B has the lowest possible among the
three models, and A and C have around the same.

(c) This question still applies to the models for which the train and test error is depicted
in Figure 1. For which values of p and for which models does the test and train error
indicate overfitting, if any? Also, which models, if any, appear to be underfit for all
settings of p?

A divergence in the test and train error indicates overfitting. This only happens for
model B at p = 20 and p = 30. The test and train error are still decreasing for model C,
so it is possible it is underfit.

(d) Is the following statement true of false? For logistic regression, with parameters op-
timized using a stochastic gradient method, setting parameters to 0 is an acceptable
initialization.
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True, it is a convex problem.

(e) Recall the LSTM architecture (see Figure 2). Suppose you want the memory cell to
sum its inputs over time. What values should you fix in the LSTM cell to achieve this,
and what values would you choose?

Figure 2: The LSTM cell.

Set input = 1, forget = 1.

(f) Alice and Barbara are trying to redesign the LeNet convolutional network architecture
to reduce the number of weights. Alice wants to reduce the number of feature maps
in the first convolution layer. Barbara wants to reduce the number of hidden units in
the last layer before the output. Explain which approach is better.

Barbara’s approach is better because most of the weights are in the fully connected
layers of LeNet (or a typical conv net architecture).

Question 2: Neural networks
Consider the following convolutional neural network architecture.

Figure 3: One-dimensional convolutional neural network.

In the first layer, we have a one-dimensional convolution with a single filter of size 3 such
that hi = σ

(∑3
j=1 vjxi+j−1

)
. The second layer is fully connected, such that z =

∑4
i=1 wihi.
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The hidden units’ activation function σ(x) is the logistic (sigmoid) function. The output
unit is linear (no activation function). We perform gradient descent on the loss function
E = (y − z)2, where y is the training label for x = (x1, . . . , x6).

(a) What is the total number of parameters in this neural network? Recall that convolu-
tional layers share weights. There are no bias terms.

The answer is 7. There are 3 parameters in layer 1 and 4 parameters in layer 2.

(b) Compute ∂E/∂wi.

∂E

∂wi
= −2(y − z)hi.

(c) Compute ∂E/∂vj .

∂E

∂vj
= −2(y − z) ∂z

∂vj
= −2(y − z)

4∑
i=1

∂z

∂hi

∂hi
∂vj

= −2(y − z)
4∑

i=1

wihi(1− hi)xi+j−1.

(d) One of the difficulties with the logistic activation function is that of saturated units,
which prohibits learning. Briefly explain the problem, and whether switching to a
tanh activation function fixes the problem.

No, switching to tanh does not fix the problem. The derivative of σ(z) is small for
large negative or positive z. The same problem persists in tanh(z). Both functions
have a sigmoidal shape. We can see that tanh is effectively a scaled and translated
sigmoid function: tanh(z) = 2σ(2z)− 1.

Question 3: Graphical models
The following figure shows a graphical model over six binary-valued variables A, . . . , F .
We do not know the parameters of the probability distribution associated with the graph.

Figure 4: Graphical model.
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(a) Write the expression for the joint probability P(A,B,C,D,E, F ) of the network in its
reduced factored form.

P(A)P(B|A)P(C|A)P(D|B,C)P(E|D)P(F |B).

(b) Which of the following conditional independence assertions are true?
i) A ⊥⊥ E
ii) B ⊥⊥ C |A

iii) F ⊥⊥ C |A
iv) B ⊥⊥ C |A,E

i) False
ii) True
iii) True
iv) True

Question 4: Hidden Markov Models (HMMs)
Consider a six-state hidden Markov model specified by (π,A, ϕ) that can output 4 possible
values. Thus, the hidden states zi ∈ {1, . . . , 6}, and the output values xi ∈ {a, b, c, d}. The
further specification of the hidden Markov model is given as follows:

π = (1, 0, 0, 0, 0, 0), A =


0 0.3 0 0.7 0 0
0 0 0.8 0 0.2 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

 , ϕ =


0.5 0.3 0 0.2
0.1 0.3 0.5 0.1
0.2 0.3 0.4 0.1
0.3 0.2 0.3 0.2
0 0.3 0.2 0.6
0.4 0.4 0.1 0.1

 .

Thus, P(zt+1 = 3|zt = 2) = 0.8, and P(zt+1 = 4|zt = 1) = 0.7. But also, P(xt = c|zt = 2) =
0.5, and P(xt = a|zt = 4) = 0.3. We will use the following shorthanded notation where we
write P(x = abca, z2 = 1, z4 = 2) instead of P(x1 = a, x2 = b, x3 = c, x4 = a, z2 = 1, z4 = 2).
For each of the items below, insert <, >, or = in the square brackets between the left and
the right expression. Justify your answer. Hint: thinking before computing might save a lot
of time.

(a) P(x = abca, z1 = 1, z2 = 2) [ ] P(x = abca|z1 = 1, z2 = 2).

<. The right hand side is the left hand side divided by P(z1 = 1, z2 = 2) which is less
than 1.

(b) P(x = abca, z1 = 1, z4 = 6) [ ] P(x = abca|z1 = 1, z4 = 6).

=. Here, P(z1 = 1, z4 = 6) = 1, hence we have equality.

(c) P(x = acdb, z2 = 2, z3 = 3) [ ] P(x = acdb, z2 = 4, z3 = 5).

<. We work out P(x = acdb, z2 = 2, z3 = 3) = CP(z2 = 2|z1 = 1)P(z3 = 3|z2 =
2)P(x2 = c|z2 = 2)P(x3 = d|z3 = 3) = C × 0.3 × 0.8 × 0.5 × 0.1. This is less than
P(x = acdb, z2 = 4, z3 = 5) = CP(z2 = 4|z1 = 1)P(z3 = 5|z2 = 2)P(x2 = c|z2 =
2)P(x3 = d|z3 = 3) = C × 0.7× 1× 0.3× 0.6 for some constant C.
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(d) P(x = acdb) [ ] P(x = acdb|z2 = 4, z3 = 5).

<. We work out the probabilities P(x = acdb, z2 = 2, z3 = 3), P(x = acdb, z2 =
2, z3 = 5), P(x = acdb, z2 = 4, z3 = 5), and sum them to get P(x = acdb). To get
P(x = acdb|z2 = 4, z3 = 5), we can divide P(x = acdb, z2 = 4, z3 = 5)by P(z2 =
4, z3 = 5) = 0.7.

(e) Describe the differences between a Hidden Markov Model and a more general Bayesian
Network.

An HMM is a time series model, where each random variable has at most one parent.
It has a specific structure, determined by the parameterization according the prior,
transition, and observation distributions. An arbitrary BN can be any acyclic graph,
along with the associated CPTs.

Question 5: Reinforcement learning
Consider the grid-world given below and Pacman who is trying to learn the optimal pol-
icy. If an action results in landing into one of the shaded states the corresponding reward
is awarded during that transition. All shaded states are terminal states, i.e., the process
terminates once arrived in a shaded state. The other states have the North, East, South, West
actions available, which deterministically move Pacman to the corresponding neighboring
state (or have Pacman stay in place if the action tries to move out of the grid). Assume the
discount factor γ = 0.5 and the Q-learning rate α = 0.5 for all calculations. Pacman starts
in state (1, 3).

Figure 5: Pacman strikes back!

(a) What is the value of the optimal value function V ∗ at the following states: V ∗(3, 2),
V ∗(2, 2), and V ∗(1, 3)? Recall that V ∗(s) represents the expected return under the
optimal policy starting in state s.

V ∗(3, 2) = 100, V ∗(2, 2) = 50, and V ∗(1, 3) = 12.5. The optimal values for the states
can be found by computing the expected reward for the agent acting optimally from
that state onwards. Note that you get a reward when you transition into the shaded
states and not out of them. So for example the optimal path starting from (2,2) is to go
to the +100 square which has a discounted reward of 0+ γ ∗ 100 = 50. For (1,3), going
to either of +25 or +100 has the same discounted reward of 12.5.

(b) The agent starts from the top left corner and you are given the following episodes
from runs of the agent through this grid-world. Each line in an episode is a tuple
containing (s, a, s′, r).

Using Q-Learning updates, what are the following Q-values after the above three
episodes: Q((3, 2), N), Q((1, 2), S), and Q((2, 2), E)?
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Episode 1 Episode 2 Episode 3
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), S, (2,1), -100 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0

(3,2), N, (3,3), +100 (3,2), S, (3,1), +80

Q((3, 2), N) = 50, Q((1, 2), S) = 0, and Q((2, 2), E) = 12.5. Q-values obtained by
Q-learning updates: Q(s, a)← (1− α)Q(s, a) + α(R(s, a, s′) + γmaxa′ Q(s′, a′))

(c) Consider a feature-based representation of the Q-value function:

Qf (s, a) = w1f1(s) + w2f2(s) + w3f3(a).

Here, f1(s) represents the x-coordinate of the state, and f2(s) represents the y-coordinate
of the state, and f3(N) = 1, f3(S) = 2, f3(E) = 3, f3(W ) = 4. Given that all wi are
initially 0, what are their values after the first episode? Note that the weight updates
are given by wi ← wi + α[(r(s, a, s′) + γmaxa′ Q(s′, a′))−Q(s, a)]fi(s, a).

w1 = −100, w2 = −100, and W3 = −100. Using the approximate Q-learning weight
updates: wi ← wi + α[(R(s, a, s′) + γmaxa′ Q(s′, a′))−Q(s, a)]fi(s, a). The only time
the reward is non zero in the first episode is when it transitions into the -100 state.

(d) Assume the weight vector w is equal to (1, 1, 1). What is the action prescribed by the
Q-function in state (2, 2)?

The action prescribed at (2,2) is maxaQ((2, 2), a) where Q(s, a) is computed using the
feature representation. In this case, the Q-value for West is maximum (2 + 2 + 4 = 8).

Question 6: The Adam optimizer
In this question, we are going to look at the Adam optimizer in more detail. Recall that,
given the gradient gt calculated at epoch t, the Adam optimizer has three distinct steps.
First, update the moving averages by vt = β1vt−1 + (1− β1)gt and st = β2st−1 + (1− β2)g2t .
Second, apply the bias correction vct = vt/(1 − βt

1) and sct = st/(1 − βt
2). Third, update the

parameters by wt+1 = wt − αvct/(
√
sct + ε).

(a) Show that st can be expressed only in terms of the gradients g1, . . . , gt by the expres-
sion st = (1− β2)

∑t
i=1 β

t−i
2 g2i .

Since st = β2st−1 + (1 − β2)g2t , this implies that st−1 = β2st−2 + (1 − β2)g2t−1, and
so on. Therefore, replacing st−1 in the first equation, gives us st = β2(β2st−2 + (1 −
β2)g

2
t−1)+(1−β2)g2t . Simplifying yields st = β2

2st−2+(1−β2)(g2t +β2g2t−1). Therefore,
st = (1−β2)(g2t +β2g

2
t−1 + · · ·+βt−1

2 g21). Or equivalently, st = (1−β2)
∑t

i=1 β
t−i
2 g2i .

(b) Given the expression of st in part (a), what is E[st] in terms of E[g2t ] and β2? You may
assume that the gi’s are independent and identically distributed.

Starting from st = (1 − β2)
∑t

i=1 β
t−i
2 g2i , we have E[st] = E[(1 − β2)

∑t
i=1 β

t−i
2 g2i ].

This leads to E[st] = (1 − β2)
∑t

i=1 β
t−i
2 E[g2i ]. Using the i.i.d. assumption, we have

E[st] = E[g
2
t ](1−β2)

∑t
i=1 β

t−i
2 . This computes toE[st] = E[g2t ](1−β2)(βt

2−1)/(β2−1).
And thus,E[st] = E[g2t ](1−βt

2). This is the motivation behind the bias correction step.

(c) The result that you obtained in part (b) explains why you do the bias correction step.
Using your result in the previous part, explain what would happen if you did not
perform the bias correction step.
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In the long term – both expectations would converge. However, initially, the value is
biased toward zero. This bias is worse with larger values of β2.

partial grade 1 2 3 4 5 6
(a) 1 1 1 1 1 1
(b) 2 2 3 1 2 2
(c) 2 2 1 2 2
(d) 1 1 2 1
(e) 2 1
(f) 1

Final grade is: (sum of partial grades) / 4.0 + 1.0
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