
Exam Advanced Machine Learning
7 January 2020, 18.30–21.15

This exam consists of 6 problems, each consisting of several questions. All answers should
be motivated, including calculations, formulas used, etc. The use of a calculator is not
allowed.

Question 1: Short questions
Please provide an argument for your answer on the following questions.

(a) Is the following statement true or false? A convolutional neural network (CNN) for
image analysis can be trained for unsupervised learning tasks, whereas an ordinary
neural network cannot.

(b) Is the following statement true or false? A perceptron model can achieve zero training
error on any linearly separable dataset.

(c) How does the bias-variance decomposition of a ridge regression estimator compare
with that of ordinary least squares regression?

(d) Is the following statement true or false? Logistic regression is equivalent to a neural
network without hidden units and using the cross-entropy loss.

(e) What are some practical problems with the sigmoidal activation functions in neural
networks?

Question 2: Neural networks
(a) Suppose that you build a neural network for a specific purpose. You train your net-

work with cost function J = 1
2 |y − z|2.

• When the input x is given to the network, first a weight matrix V mapping the
input layer to the hidden layer is applied to yield g = V x.

• The vector of hidden unit values g are then activated using a ReLU activation
function r, yielding h = r(g).

• Finally, the activated values are transformed to the output z by a weight matrix
W given by z =Wh.

Derive ∂J/∂Wij and ∂J/∂Vij for this network.

(b) Suppose that you have a 3-dimensional input x = (x1, x2, x3) = (2, 2, 1) fully con-
nected to 1 neuron with activation function gi. The forward propagation can be writ-
ten as

ai = gi (w1x1 + w2x2 + w3x3 + b) .

After training this network, the values of the weights and bias are w = (w1, w2, w3) =
(0.5,−0.2, 0) and b = 0.1. You try 4 different activation functions g1, . . . , g4, which
respectively output the values a1 = 0.67, a2 = 0.70, a3 = 1.0, and a4 = 0.70. What is
a valid guess for the activation functions g1, . . . , g4? You can choose for each activa-
tion function from the set of sigmoid, tanh, linear, ReLU, leaky ReLU, and indicator
functions.
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(c) Explain what effect the following operations generally have on the bias and variance
of your model.

(1) Regularizing the weights;

(2) Increasing the size of the layers (more hidden units per layer);

(3) Using dropout to train a deep neural network;

(4) Getting more training data (from the same distribution as before).

Question 3: Graphical models
The following figure shows a graphical model over four binary valued variablesX1, . . . , X4.
We do not know the parameters of the probability distribution associated with the graph.

X1

X3 X4

X2

(a) Write the expression for the joint probability P(X1, X2, X3, X4) of the network in its
reduced factored form.

(b) Would it typically help to know the value of X3 so as to gain more information about
X2?

(c) Assume we already know the value ofX4. Woud it help in this case to know the value
of X3 to gain more information about X2?

(d) List three different conditional independence statements between the four variables
that can be inferred from the graph. You can include marginal independence by say-
ing “given nothing”.

Question 4: Hidden Markov Models (HMMs)
Consider a two-state hidden Markov model specified by (π,A, ϕ) that can output 4 possible
values. Thus, the hidden states zi ∈ {1, 2}, and the output values xi ∈ {1, 2, 3, 4}. The
further specification of the hidden Markov model is given as follows:

π = (0.5, 0.5), A =

(
0.99 0.01
0 1

)
, ϕ =

(
0 0.199 0.8 0.001
0.1 0 0.7 0.2

)
.

(a) Give an example of an output sequence of length 2 that cannot be generated by the
hidden Markov model specified above.

(b) We generated a sequence of 20202020 observations from the hidden Markov model,
and found that the last observation in the sequence was 3. What is the most likely
hidden state corresponding to that last observation?

(c) Consider an output sequence with a 3 followed by another 3. What is the most likely
sequence of hidden states corresponding to these observations?

(d) Consider an output sequence with a 3 followed by another 3 followed by a 4. What
are the first two states of the most likely sequence of hidden states corresponding to
these observations?
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Question 5: Reinforcement learning
We are using Q-learning to learn a policy in a system with two states s1 and s2. State s1 has
two actions (a and b), and state s2 has only one action (c). Suppose that the discount factor
is γ, and the learning rate is α. We initialize the Q-table with all zero values.

(a) On the first transition, you start in state s1, apply action a, receive an immediate re-
ward of 1, and then land in state s2. What is the resulting Q-table? Give your answer
as an algebraic expression that may include one or both of the symbols γ and α.

(b) On the second transition, you apply action c, receive an immediate reward of 0, and
then land in state s1. What is the resulting Q-table? Give your answer as an algebraic
expression that may include one or both of the symbols γ and α.

(c) On the third transition, you apply action b, receive an immediate reward of 1, and
then land in state s2. What is the resulting Q-table? Give your answer as an algebraic
expression that may include one or both of the symbols γ and α.

(d) What is the optimal policy that Q-learning has learned so far?

Question 6: Regularized linear regression
Recall that the objective function for the L2 regularized linear regression is given by

J(w) = ||Xw − y||22 + λ||w||22,

where X is the design matrix (the rows of X are the data points). During the lecture, we
derived that the global minimizer of J is given by

w∗ = (XTX + λI)−1XTy.

Now, let us consider running Newton’s method to minimize J . Thus, let w0 be an arbitrary
initial guess for Newton’s method. One update step is then given by

w1 = w0 − [H(J(w))]
−1∇wJ(w),

where H is the Hessian, and∇ is the gradient.

(a) Show that w1, the value of the weights after one Newton step, is equal to w∗.

partial grade 1 2 3 4 5 6
(a) 1 3 1 1 1 3
(b) 1 2 1 1 1
(c) 1 2 1 1 1
(d) 1 1 1 1
(e) 1

Final grade is: (sum of partial grades) / 9.0 + 1.0
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