
Exam Advanced Machine Learning
24 October 2019, 15.15–18.00

This exam consists of 6 problems, each consisting of several questions. All answers should
be motivated, including calculations, formulas used, etc. The use of a calculator is not
allowed.

Question 1: Logistic regression
Consider the problem of the binary classification task depicted in Figure 1 (left). We attempt
to solve this with the simple linear logistic regression model:

P(y = 1 |x,w) = g(w1x1 + w2x2) =
1

1 + e−w1x1−w2x2
.

For simplicity, we do not use the bias parameter w0. The training data can be separated
with zero training error: see line L1 in Figure 1 (right), for instance.

Figure 1: Classification problem

(a) Consider the regularization approach where we use regularization on only w2. Thus,
the regularization penalty is λw2

2 . We would like to know which of the four lines
in Figure 1 (right) could arise from L1 as a result of such regularization. For each
potential line L2, L3, and L4 determine whether it can result from regularization of
w2. Explain your answer.

L2: No. When we regularize w2, the resulting boundary can rely less on the value of
x2 and therefore becomes more vertical. L2 here seems to be more horizontal than the
unregularized solution so it cannot come as a result of penalizing w2.

L3: Yes. Here w2
2 is small relative to w2

1 (as evidenced by high slope), and even though
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it would assign a rather low log-probability to the observed labels, it could be forced
by a large regularization parameter λ.

L4: No. For very large λ, we get a boundary that is entirely vertical (line x1 = 0 or the
x2 axis). L4 here is reflected across the x2 axis and represents a poorer solution than
its counter part on the other side. For moderate regularization we have to get the best
solution that we can construct while keeping w2 small. L4 is not the best and thus
cannot come as a result of regularizing w2.

(b) If we change the regularization to the absolute value and also regularize w1, we get a
regularization penalty having the form λ (|w1|+ |w2|). As we increase the regulariza-
tion parameter λ, describe what will happen to the weights w1 and w2, and in which
order.
First w1 will become 0, then w2. The data can be classified with zero training error
and therefore also with high log-probability by looking at the value of x2 alone, i.e.,
making w1 = 0. Initially we might prefer to have a non-zero value for w1 but it will go
to zero rather quickly as we increase regularization. Note that we pay a regularization
penalty for a non-zero value of w1 and if it does not help classification why would we
pay the penalty? The absolute value regularization ensures that w1 will indeed go to
exactly zero. As λ increases further, even w2 will eventually become zero.

Question 2: Neural networks
Consider this three layer network:

Let σ be the sigmoid function for the activations. Then, we have

(a) Given that f = w
[3]
1 a

[2]
1 + w

[3]
2 a

[2]
2 , compute the following four derivatives:

δ1 =
∂f(x)

∂z
[2]
1

, δ2 =
∂f(x)

∂Z [2]
, δ3 =

∂f(x)

∂Z [1]
, δ4 =

∂f(x)

∂w
[1]
11

.
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δ1 = w
[3]
1 σ(z

[2]
1 )(1− σ(z[2]1 )) = w

[3]
1 a

[2]
1 (1− a[2]1 ).

δ2 =
[
w

[3]
1 w

[3]
2

]T
·A[2] · (1−A[2]).

δ3 =

[
w

[2]
11 w

[2]
12

w
[2]
21 w

[2]
22

]T
δ2 ·A[1] · (1−A[1]).

δ4 = δT3

[
x1
0

]
.

(b) Explain why dropout in a neural network acts as a regularizer.

Dropout is regularization method that removes nodes randomly during training. It
has the effect of making the training process noisy, forcing nodes within a layer to
probabilistically take on more or less responsibility for the inputs. It simulates a
sparse activation from a given layer, which in turn encourages the network to learn a
sparse representation.

(c) Briefly explain one method for dealing with the problem of exploding gradients and
one method for dealing with the problem of vanishing gradients in deep neural net-
works.

Exploding gradients→ gradient clipping,
Vanishing gradients→ activation outputs that skip a layer (cf., ResNet).

Question 3: Graphical models
We wish to develop a graphical model for the following transportation problem.

A transport company is trying to choose between two alternative routes for commuting be-
tween Rotterdam and Amsterdam. In an experiment, two identical trucks leave Rotterdam
at the same but otherwise random time T . The trucks take different routes, arriving at their
(common) destination in Amsterdam at times A1 and A2.

The transit time for each route depends on the congestion along the route, and the two con-
gestions are unrelated. Let us represent the random delays introduced along the routes by
variables C1 and C2. Finally, let F represent the identity of the truck that reaches Amster-
dam first. We view F as a random variable that takes values 1 or 2.

(a) Draw a graphical model with edges so that it captures the relationships between the
variables in this transportation problem.

The graph depends on the interpretation of the question. Given that the congestion
C1 and C2 are independent of the departure time T , we get the following graph. Of
course, when they are assumed dependent, the graph will be different (and will be
considered correct). In both cases, an explanation has to be given.
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TC1 C2

A1 A2

F

(b) Write the expression for the joint probability P(T,A1, A2, C1, C2, F ) of the network in
its reduced factored form.

P(T,A1, A2, C1, C2, F ) = P(C1)P(C2)P(T )P(A1|C1, T )P(A2|C2, T )P(F |A1, A2).

(c) Check if T is conditionally independent of C1 given F in the network. Provide a good
argument for your answer.

T is NOT conditionally independent of C1 given F .

Question 4: Hidden Markov Models (HMMs)
The following questions pertain to hidden Markov models. The subparts in this question
are not related to each other.

(a) The following network depicts a sequence of 5 observations from a hidden Markov
model, where z1, z2, z3, z4, and z5 is the hidden state sequence. Are x1 and x5 inde-
pendent given x3? Please motivate your answer.

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

x1 and x5 are NOT independent given x3.

(b) Assume that the following sequences are very long and the pattern highlighted with
spaces is repeated:

Sequence 1: 1 0 0 1 0 0 1 0 0 1 0 0 · · · 1 0 0

Sequence 2: 1 1 0 0 1 0 0 1 0 0 1 0 0 · · · 1 0 0

If we model each sequence with a different first-order hidden Markov model, what is
the number of hidden states for the latent variable that a reasonable model selection
method would report? Explain your answer and give the triplet (π,A, ϕ) for each
sequence explicitly. Remember that π is the initial distribution for the latent variables,
A the transition matrix for the latent variables, and ϕ the emission probabilities.

Sequence 1:

π = (1, 0, 0), A =

0 1 0
0 0 1
1 0 0

 , ϕ = (1, 0, 0).
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Sequence 2:

π = (1, 0, 0, 0), A =


0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , ϕ = (1, 1, 0, 0).

(c) Is the following statement true or false? The sequence of observed states sampled
from a hidden Markov model satisfies the first-order Markov property. Please provide
an argument for your answer.

The statement is FALSE.

Question 5: Reinforcement learning
We are using Q-learning to learn a policy in a system with two states s1 and s2, and two
actions a and b. Assume that the discount factor γ = 0.8, and that the learning rate α = 0.2.
The current values of Q are

Q(s1, a) 2.0
Q(s1, b) 2.0
Q(s2, a) 4.0
Q(s2, b) 2.0

(a) Suppose that when we were in state s1, we took action b, received reward 1.0, and
moved to state s2. Which item of the Q-table will change, and what is the new value?

Q(s1, b) changes to Q(s1, b) + α[R(s1) + γmaxaQ(s2, a) −Q(s1, b)]. This gives a new
values of Q(s1, b) = 2.0 + 0.2[1.0 + 0.8 · 4.0− 2.0] = 2.44.

(b) Do you agree or disagree with the following statement: Q-learning can only be used
when the learner has prior knowledge of how its actions affect its environment. Please
provide an argument to your answer.

The statement is FALSE.

(c) For Q-learning to converge, we need to correctly manage the exploration versus ex-
ploitation trade-off. What property needs to hold for the exploration strategy?

In the limit, every action needs to be tried sufficiently often in every possible state.
This can be guaranteed with a sufficiently permissive exploration strategy.

Question 6: Bayesian linear regression
Suppose that you are doing machine learning with linear regression models using basis
functions ϕ(·). Thus, the prediction is given by y(x,w) = w>ϕ(x). We assume that the data
points are drawn independently from the distribution p(t |x,w, σ2) = N (t | y(x,w), σ2),
where σ2 is the variance. We are applying a Bayesian framework to learn the parameters w
by setting the prior distribution to p(w) = N (w |m0,S0) having mean m0 and covariance
S0.

(a) Show by “completing the squares” that the posterior distribution p(w | t) = N (w |mN ,SN )
where

mN = SN (S−10 m0 + Φ>t/σ2),

S−1N = S−10 + Φ>Φ/σ2.

See solution to Exercise 3.7.
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(b) Suppose that we consider the prior S0 = α−1I for the covariance. Show that mN

converges to mN = (Φ>Φ)−1Φ>t as α→ 0.

Asα→ 0, we have S−10 → 0. Consequently, S−1N → Φ>Φ/σ2 and mN → SN (Φ>t/σ2).
The result now follows by substituting SN into mN .

(c) Given an interpretation of the result in part b.

When α → 0, the prior will become infinitely broad having no prior information.
Hence, mN reduces to the maximum likelihood solution.

partial grade 1 2 3 4 5 6
(a) 3 4 3 2 3 3
(b) 2 1 1 3 1 2
(c) 2 2 1 1 2

Final grade is: (sum of partial grades) / 4.0 + 1.0
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