
Resit Advanced Machine Learning
8 January 2019, 18.30–21.15

This exam consists of 5 problems, each consisting of several questions. All answers should
be motivated, including calculations, formulas used, etc. The use of a calculator is not
allowed.

Question 1: Bias-variance trade-off
Consider the following training data for solving the classification problem illustrated in the
following figure. The circles (◦) represent one class and the crosses (×) represent the other
class.

We attempt to solve this binary classification task with a machine learning model. In doing
so, there is a trade-off between the bias and the variance of the model.

(a) Please explain what the bias-variance trade-off is.

Bias is the difference between the average prediction of our model and the correct
value which we are trying to predict. Variance is the variability of model prediction
for a given data point or a value that tells us the spread of our data. If our model is
too simple, then it may have high bias and low variance. As the model increases in
parameters, it is going to have a high variance and low bias. Therefore, one needs to
find a good balance.

The outcome of the machine learning model is a decision boundary that aims to separate
the two classes. Draw a potential decision boundary for the following cases having the
stated characteristics, and explain your answer.

(b) low bias and low variance.
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(c) low bias and high variance.

(d) high bias and low variance.

(e) high bias and high variance.

Question 2: Decision trees
For this question, we are going to try to determine whether a particular type of food is
appealing based on the food’s temperature, taste, and size. For this purpose, we are given
data represented in the following table.

The impurity will be measured by the entropy. Note that for a given set S, the entropy is
given by

E(S) = −p log2(p)− q log2(q),

with p the fraction of positive samples, and q = 1− p the fraction of negative samples.
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Appealing Temperature Taste Size
No Hot Salty Small
No Cold Sweet Large
No Cold Sweet Large
Yes Cold Sour Small
Yes Hot Sour Small
No Hot Salty Large
Yes Hot Sour Large
Yes Cold Sweet Small
Yes Cold Sweet Small
No Hot Salty Large

(a) What is the initial entropy of Appealing?

−5/10 · log(5/10)− 5/10 · log(5/10).

(b) Assume that Taste is chosen for the root of the decision tree. What is the information
gain associated with this attribute, i.e., how much decrease in initial entropy do you
get upon splitting on this variable?

[1− 4/10 · (2/4 · log(2/4) + 2/4 · log(2/4))− 6/10 · 0].

(c) Draw the full decision tree learned for this data (assuming that Taste is the root) with-
out any pruning.

Question 3: Hidden Markov Models
Assume we are working with a Hidden Markov Model (HMM) given as in the picture
below.
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The latent variables zi assume values in the set {1, 2, 3}, and the observations xi also as-
sume values in the set {1, 2, 3}. Recall that the model is fully defined by (π,A, φ). Let the
initial distribution be given by π = (1, 0, 0), the transition probability matrixA for the latent
variables and the emission probability matrix φ by

A =

 1
2

1
2 0

0 1
2

1
2

0 0 1

 , φ =

 1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

 .

Remember that the probability that the latent variable moves from state i to state j is given
by Aij = P(zn+1 = j | zn = i). Similarly, the probability that one observes j when the latent
variable is in state i is given by φij = P(xn = j | zn = i).

(a) Suppose that we let HMM run with parameters (π,A, φ), and that we have observed
the sequence (x1,x2,x3,x4,x5,x6,x7,x8,x9) = (1, 3, 1, 2, 2, 3, 2, 3, 3). We are inter-
ested in the probabilities that explain the observations. For this, define the probability
αt(i) = P(x1, . . . ,xt, zt = i). Thus, α3(2) = P(x1 = 1,x2 = 3,x3 = 1, z3 = 2). Fill in
the following table.

t αt(1) αt(2) αt(3)

1 1/2
2 1/8
3 1/32
4 1/128
5 1/256
6 1/512
7 1/1024
8 1/2048
9 1/4096

Question 4: Graphical models
Consider the following graphical model.

H U P W

(a) Which of the following independence statements follow from the above network
structure? Please motivate your answer.

(a) H is independent of P
True

(b) W is independent of U given H
False

(c) H is independent of P given U
False

(b) Write the expression for the joint probability P(H,U, P,W ) in its reduced factored
form.

P(H,U, P,W ) = P(H)P(W )P(P |W )P(U |H,P ).
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Question 5: Neural networks
The following questions pertain to the foundations of neural networks.

(a) Assume that you are not concerned with the training time of your neural network.
When using a neural network it is best to include enough hidden units so that the
training error can be reduced as much as possible. Can you explain why you agree or
disagree with this statement?

False: minimizing training error will not necessarily minimize true test set error -
overfitting may set in.

(b) A 1-layer neural network (i.e., there are no hidden layers) can only compute linear
variations of AND, OR, and XOR. Can you explain why you agree or disagree with
this statement?

False: A 1-layer neural network cannot compute an XOR.

(c) Please explain when it is possible to run a gradient descent algorithm. What is guar-
anteed by the algorithm, and what is not guaranteed?

The algorithm is guaranteed to converge to a local minimum of the error function. It
is not guaranteed to converge to the global minimum (nor to a ‘good’ minimum, not
always to the same minimum).
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Question 6: Kaggle competition
These questions pertain to the Kaggle competition on flight delays.

(a) Which model(s) did you use in the competition? Elaborate on the choices on the
model(s) and the corresponding (hyper)parameter(s).

(b) Which features (default and/or created) did you use in your model and why?

(c) Did overfitting play a role in the process of developing your solution? If so, how did
it play a role and what did you do about it? If not, please explain why.

(d) How good do you think the performance of your model is? Please explain.

partial grade 1 2 3 4 5 6
(a) 6 6 9 6 6 4
(b) 3 6 3 6 4
(c) 3 6 6 4
(d) 3 3
(e) 6

Final grade is: (sum of partial grades) / 10 + 1.0
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